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Abstract

Essays in Semiparametric and Nonparametric Microeconometrics

by

Matias Damian Cattaneo

Doctor of Philosophy in Economics

University of California, Berkeley

Professor James L. Powell, Chair

A large fraction of the literature on program evaluation focuses on e¢ cient, �exible

estimation of treatment e¤ects under the assumption of unconfoundedness. The �rst

two chapters of this dissertation contribute to this literature by studying the e¢ cient

estimation of a large class of multi-valued treatment e¤ects as implicitly de�ned by a

collection of possibly over-identi�ed non-smooth moment conditions when treatment

assignment is assumed to be ignorable. Chapter 2 proposes two general estimators,

one based on an inverse probability weighting scheme and the other based on the

e¢ cient in�uence function of the model, and provides a set of su¢ cient conditions that

ensure root-n consistency, asymptotic normality and e¢ ciency of these estimators.

Chapter 3 shows that, under mild assumptions, these conditions are satis�ed for the
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marginal mean treatment e¤ect and marginal quantile treatment e¤ect, two estimands

of particular importance for empirical applications. Previous results for average and

quantile treatments e¤ects may be seen as particular cases of the methods proposed in

Chapter 2 when treatment is assumed to be dichotomous. Chapter 3 also illustrates

the empirical applicability of the results derived in Chapter 2 by studying the e¤ect

of maternal smoking intensity during pregnancy on birth weight. The main empirical

�ndings suggest the presence of approximately homogeneous, non-linear treatment

e¤ects concentrated on the �rst 10 cigarettes-per-day smoked during pregnancy.

Finally, Chapter 4 derives the optimal rates of convergence for the Block Regres-

sion Estimator, a nonparametric estimator of the regression function that is implic-

itly used when estimating the Average Treatment E¤ect by subclassi�cation on the

propensity score. This result contributes to both the literature of program evaluation

and the literature of nonparametric estimation.

Professor James L. Powell
Dissertation Committee Chair
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To my wife, Rocio.
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Chapter 1

Introduction

Econometric program evaluation has a crucial role in many di¤erent �elds of study

ranging from the social sciences to public health and biostatistics. The main focus

of the program evaluation literature is on the estimation of (causal) treatment ef-

fects on some outcome of interest. A large fraction of this literature focuses on the

(e¢ cient) estimation of di¤erent treatment e¤ects under the assumption of uncon-

foundedness, this is, assuming that any selection into treatment undertaken by the

observational units can be removed by conditioning on a su¢ ciently rich set of ob-

servable characteristics. Even though it is usually a strong assumption in applied

work, unconfoundedness has received considerable attention in recent years.

The literature of program evaluation concentrates almost exclusively on the special

case of binary treatment assignments, despite the fact that in many empirical appli-

cations treatments are implicitly or explicitly multi-valued in nature. For example, in
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training programs participants receive di¤erent hours of training, in conditional cash

transfer programs households receive di¤erent levels of transfers, and in educational

interventions individuals are assigned to di¤erent classroom sizes. In cases such as

these, a common empirical practice is to collapse the multi-valued treatment status

into a binary indicator for eligibility or participation, a procedure that allows for the

application of available semiparametric econometric techniques at the expense of a

considerable loss of information. Important phenomena such as non-linearities and

di¤erential e¤ects across treatment levels cannot be captured by the classical dichoto-

mous treatment literature. This is especially important in a policy-making context

where this additional information may provide a better understanding of the policy

under consideration.

The �rst two chapters of this dissertation are concerned with the e¢ cient es-

timation of a general class of �nite multi-valued treatment e¤ects when treatment

assignment is assumed to be ignorable. Chapter 2 studies two estimation procedures

for a population parameter implicitly de�ned by a possibly over-identi�ed non-smooth

collection of moment restrictions and provides a set of su¢ cient conditions that guar-

antees that these estimators be e¢ cient in large samples. This chapter provides gen-

eral high-level conditions that ensure that these estimators be asymptotically e¢ cient

without explicitly imposing any particular nonparametric estimator for the unknown

nuisance in�nite dimensional components involved in the estimation.

The general results presented in Chapter 2 are then used to analyze several lead-
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ing examples of treatment e¤ects of interest both theoretically and in an empirical

illustration. In particular, Chapter 3 discusses the e¢ cient semiparametric estimation

of marginal mean treatment e¤ects and marginal quantile treatment e¤ects, which

provides the basis for the analysis of a rich set of population parameters by allow-

ing not only for comparisons across and within treatment levels, but also for the

construction of other quantities of interest. For example, the researcher may eas-

ily construct measures of inequality, di¤erential treatment e¤ects, and heterogeneous

treatment e¤ects by considering di¤erent functions of means and quantiles such as

pairwise di¤erences, interquantile ranges and incremental ratios. This chapter also

introduces a new nonparametric estimator appropriate for the model under study

and shows how the high-level conditions developed in Chapter 2 can be veri�ed using

this nonparametric estimator. Finally, Chapter 3 also illustrates the applicability of

the theoretical results developed in Chapter 2 by estimating the e¤ect of maternal

smoking intensity on birth weight.

The main results of Chapters 2 and 3 are closely related to the program evaluation

literature, the missing data literature and the measurement error literature in both

econometrics and statistics.1 Most of these works may be traced back to the seminal

papers of Rubin (1974) and Rosenbaum and Rubin (1983), and often focus on the

identi�cation and semiparametric (e¢ cient) estimation of di¤erent population para-

meters of interest. In the context of program evaluation and for the particular case

1For recent surveys on these topics, usually with a particular emphasis on binary treatment
assignments, see Rosenbaum (2002), Frölich (2004), Imbens (2004), Lee (2005), or Tsiatis (2006).
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of binary treatments, great e¤ort has been devoted to the e¢ cient estimation of the

average treatment e¤ect (ATE) and average treatment e¤ect on the treated (ATT)

using either nonparametric regression methods (Hahn (1998), Heckman, Ichimura,

and Todd (1998), Imbens, Newey, and Ridder (2006)), matching techniques (Abadie

and Imbens (2006)), or procedures based on the nonparametric estimation of the

propensity score (Hirano, Imbens, and Ridder (2003)). Recently, Firpo (2007) consid-

ered a di¤erent population parameter by studying the e¢ cient estimation of quantile

treatment e¤ects for dichotomous treatment assignments using a nonparametrically

estimated propensity score. In the closely related context of missing data, Robins,

Rotnitzky, and Zhao (1994), Robins and Rotnitzky (1995) and Robins, Rotnitzky,

and Zhao (1995) develop a general (locally) e¢ cient estimation strategy for mod-

els where the missingness indicator is binary involving the parametric estimation of

both a regression function and the propensity score. Finally, two recent contribu-

tions by Chen, Hong, and Tamer (2005) and Chen, Hong, and Tarozzi (2007) study

e¢ cient GMM estimation in the context of measurement error models under a set of

assumptions similar to ignorability with a binary missingness indicator.

Considerably less work is available in the literature for the case of multiple treat-

ment assignments. In the context of program evaluation, Imbens (2000) derives a gen-

eralization of the propensity score, termed the Generalized Propensity Score (GPS),

and shows that the results of Rosenbaum and Rubin (1983) continue to hold when

the treatment status is multi-valued. Concerning identi�cation and estimation, Im-
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bens (2000) and Lechner (2001) discuss marginal mean treatment e¤ects but do not

assess the asymptotic properties of their estimators, while Abadie (2005) studies the

large sample properties of an estimator for the marginal mean treatment e¤ect condi-

tional on a treatment level in the context of a di¤erence-in-di¤erences model. In the

framework of missing data and under the assumption of missing at random there are

further results in terms of limiting distributions and (local) e¢ ciency properties for

estimators of the marginal means; for a survey on these results see the recent paper of

Bang and Robins (2005) and the references therein. Finally, in the context of missing

data but without the assumption of missing at random, Horowitz and Manski (2000)

develop sharp bounds for di¤erent multi-valued marginal mean treatment e¤ects.

Finally, Chapter 4 of this dissertation derives optimal rates of convergence for the

Block Regression Estimator, a nonparametric estimator of an unknown regression

function which generalizes a well known estimator in the statistical literature known

as Partitioning (see, Kohler, Krzyzak, and Walk (2006) and references therein). It

turns out that this nonparametric estimator plays a key role in the construction of

a commonly used estimation procedure for the ATE in program evaluation gener-

ally referred to as Subclassi�cation on the Propensity Score. Thus, establishing the

large sample properties of the Block Regression Estimator is important not only for

the statistical literature on nonparametric estimation, but also for the literature on

program evaluation.

Chapter 5 outlines some possible extensions and concludes.
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Chapter 2

E¢ cient Semiparametric GMM

Estimation with Missing Data at

Random

The main contribution of this chapter to the literature of program evaluation is

to develop a uni�ed framework for the e¢ cient estimation of a large class of multi-

valued treatment e¤ects. This general framework not only includes as particular cases

important results from the program evaluation literature when treatment is binary,

but also allows for the e¢ cient estimation of other estimands of interest. First,

the E¢ cient In�uence Function (EIF) and Semiparametric E¢ ciency Bound (SPEB)

for the general population parameter of interest using the methodology outlined in

Newey (1990) and Bickel, Klaasen, Ritov, and Wellner (1993) is computed. Then,
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two estimators of multi-valued treatment e¤ects are introduced and motivated as the

solution to a general GMM model with missing data at random. To circumvent the

fundamental problem of causal inference, these estimators are constructed by forming

sample analogues of two (possibly over-identi�ed) moment conditions that depend

only on observed data. For the �rst estimator, the observed moment condition is

obtained by an Inverse Probability Weighting (IPW) scheme based on the GPS which

may be interpreted as a moment condition exploiting a portion of the EIF. For the

second estimator, the observed moment condition is obtained by using the complete

form of the EIF and involves both the GPS and another conditional expectation.

Because the observed moment conditions include not only the treatment e¤ects of

interest but also some in�nite dimensional nuisance parameters, both estimators are

of the two-step variety. In the �rst step, the in�nite dimensional nuisance parameters

are estimated and, in the second step, the corresponding GMM problem is solved.

Notice that the model considered here may provide further e¢ ciency gains in the

estimation of treatment e¤ects by allowing for over-identi�cation.

The large sample results are derived in two basic stages. In the �rst stage, devel-

oped in this chapter, consistency, asymptotic normality and e¢ ciency of both estima-

tors is established for any given nonparametric estimator of the in�nite dimensional

nuisance parameters. These results are obtained by imposing a set of mild su¢ cient

conditions concerning the underlying moment identi�cation functions as well as two

well-known high-level conditions involving the nonparametric estimators. This strat-
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egy provides a better understanding of the set of su¢ cient conditions required for

the general procedure to work and allows for di¤erent choices of the nonparametric

estimator of the nuisance parameters. The mild conditions imposed for the under-

lying moment identi�cation functions are easily veri�ed in applications, as shown in

the examples discussed in Chapter 3, while the two-high level conditions generally

require additional work. Thus, in the second stage, developed in Chapter 3, the non-

parametric estimation of the two nuisance parameters for the particular case of series

estimation is discussed in detail.

Once an e¢ cient estimation procedure is available, it is discussed how other im-

portant population parameters of interest may be e¢ ciently estimated by means of

transformations. Intuitively, because semiparametric e¢ ciency is preserved by a stan-

dard delta-method argument, other treatment e¤ects that may be written as functions

of the general population parameter of interest are also e¢ ciently estimated. For the

case of binary treatments, this implies that the results of Hahn (1998), Hirano, Im-

bens, and Ridder (2003), and Firpo (2007) may be seen as particular cases of the

procedure developed here, as discussed in detail in Chapter 3. Furthermore, this

general procedure allows for the e¢ cient estimation of restricted treatment e¤ects by

means of a simple minimum distance estimator based on the e¢ ciently estimated,

unrestricted treatment e¤ects. In addition to enlarging the class of treatment e¤ects

covered by the results presented here, these ideas also allow for �optimal�testing of

many hypotheses of interest.
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2.1 Preliminaries

2.1.1 The Model

Consider the multi-valued treatment e¤ect model, which is the natural extension

of the well-known model used in the classical binary treatment e¤ect literature.1

Assume there exists a �nite collection of multiple treatment status (categorical or

ordinal) indexed by t 2 T , where without loss of generality T = f0; 1; 2; � � � ; Jg with

J 2 N �xed. The random variables fY (t); t 2 T g, with Y (t) 2 Y � R, denote the

collection of potential outcomes under treatment t 2 T , while the random variable

T 2 T indicates which of the J+1 potential outcomes is observed. Thus, the observed

outcome is the random variable Y =
P

t2T DtY (t), whereDt = 1 fT = tg for all t 2 T

and 1 f�g is the indicator function. It is also assumed that there exists a real-valued

random vector X 2 X � Rdx, dx 2 N, which is always observed.

The population parameter of interest is the vector �� = [��00 ; �
�0
1 ; � � � ; ��0J ]

0, where

��t 2 B � Rd� for all t 2 T and d� 2 N. It is assumed that this parameter solves a

collection of J + 1 (possibly over-identi�ed) moment conditions given by

E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T , (2.1)

where the function m : Y �B ! Rdm is known (possibly non-smooth) with dm � d�.

This model corresponds to a slightly specialized case of a general GMM model with

multi-level missing data. This may be veri�ed by a simple change in notation: let
1For a review of the binary treatment e¤ect literature see Imbens (2004), and for a review of the

multi-valued treatment e¤ect literature see Frölich (2004).
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Y (t) 2 Rdy with dy � 1 and (abusing notation) rede�ne Y (t) = (Y (t) ; X) for all t 2

T . Although all the results in this chapter apply to this more general model without

changes, for simplicity the discussion is restricted to the multi-valued treatment e¤ect

model.2

The maintained assumption in equation (2.1) imposes a conventional high-level

identi�cation condition for GMM estimation as de�ned by the collection of moment

conditions. This model allows for a large class of population parameters of interest

including those de�ned by non-smooth moment functions such as quantiles or other

robust estimands.

Finally, it is assumed that a random sample of size n from (Y; T;X) is observed,

which is denoted by (Yi; Ti; Xi), i = 1; 2; � � � ; n. This leads to a cross-sectional random

sample scheme where only the potential outcome corresponding to T = t is observed,

which implies that e¤ectively the sample comes from the conditional distribution of

Y (t) given T = t rather than from the marginal distribution of Y (t), a fact that will

in general induce a bias in the estimation. Notice that in this model the fundamental

problem of causal inference is exacerbated: only one of the J + 1 potential outcomes

for each unit is observed.
2Furthermore, observe that all dimensions and moment conditions have been set equal across

treatment levels t 2 T . This is done only to simplify notation since all the results presented continue
to hold in the more general case where di¤erent dimensions and/or moment conditions depending
on t are considered.
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2.1.2 Identi�cation

The identi�cation condition in equation (2.1) covers many cases of interest. How-

ever, it has the obvious drawback of being based on unobservable random variables,

the potential outcomes, which makes estimation infeasible. To proceed, an additional

identi�cation restriction is needed. Following the program evaluation literature, the

�selection on observables�assumption is imposed based on the always observed ran-

dom vector X:

Assumption 1 For all t 2 T :

(a) Y (t) ?? Dt j X; and

(b) 0 < pmin � p�t (X) � P [T = t j X].

In the context of multi-valued treatment e¤ects, Assumption 1 is sometimes re-

ferred to as Ignorability while the conditional probabilities p�t (X), t 2 T , are known

as the Generalized Propensity Score. Imbens (2000) and Lechner (2001) provide a

detailed discussion of this assumption and discuss the role of the GPS in the estima-

tion of the particular population parameter, which coincides with the �rst example

of possible estimands of interest presented in Chapter 3.

Part (a) of Assumption 1 has been widely used in the program evaluation, missing

data and measurement error literatures. This condition, sometimes called Uncon-

foundedness or Missing at Random, ensures that the distribution of each potential

outcome and the treatment level indicator be conditionally independent and con-
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sequently provides identi�cation by imposing �random assignment� conditional on

observables. Intuitively, this assumption guarantees that, after conditioning on X,

the conditional distribution of Y (t) given T = t and the marginal distribution of

Y (t) be identical. This assumption turns out to be su¢ cient for identi�cation of ��

because it leads to

E [E [m (Y ; �t) j T = t;X]] = E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T .

(2.2)

Part (b) of Assumption 1 is important for at least two reasons. First, it is a

necessary condition for �niteness of the semiparametric e¢ ciency bound for regular

estimators of �� as discussed in the next section. Second, together with part (a),

it provides the opportunity to consider alternative identi�cation conditions based on

the observed random variables. For example, it may easily be veri�ed that

E
�
Dtm (Y ; �t)

p�t (X)

�
= E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T , (2.3)

and

E
�
DtE [m (Y ; �t) j X]

p�t (X)

�
= E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T ,

(2.4)

which leads to two additional observed moment conditions.3

Using equations (2.2), (2.3) and (2.4) as a starting point, several estimation pro-

cedures and their corresponding e¢ ciency properties have been considered in the

3Other identi�cation conditions are also available in the literature based on this idea. For example,
see Hahn (1998).
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literature for the particular case of binary treatment e¤ects (or binary missingness in-

dicator). Estimators that exploit moment conditions (2.2) or (2.4) are usually known

as �imputation� or �projection� estimators because �rst a conditional expectation

function is (nonparametrically) estimated, and then missing outcomes are imputed

for all (or some subset of) the observations and averaged out. Recent examples of pa-

pers studying this kind of estimators are Hahn (1998) and Imbens, Newey, and Ridder

(2006) in the context of program evaluation with binary treatments, and Chen, Hong,

and Tamer (2005) and Chen, Hong, and Tarozzi (2007) in the context of nonclassical

measurement error. In the framework of missing data, there is a vast literature known

as Doubly Robust Estimation that is based on moment conditions such as equation

(2.4) and uses parametric speci�cations of the unknown functions. Bang and Robins

(2005) present a comprehensive review on this topic.

Estimators constructed from the moment condition (2.3) lead naturally to an

Inverse Probability Weighting (IPW) scheme and have been considered by many

authors in di¤erent contexts at least since the work of Horvitz and Thompson (1952).

Intuitively, this procedure achieves identi�cation by reweighting the observations to

make them representative of the population of interest. This idea has been exploited

in the program evaluation literature by Imbens (2000), Hirano, Imbens, and Ridder

(2003) and Firpo (2007), in the missing data literature by Robins, Rotnitzky, and

Zhao (1994) and Robins, Rotnitzky, and Zhao (1995), and in the measurement error

literature by Chen, Hong, and Tarozzi (2007), among others. Wooldridge (2007)
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provides a very interesting discussion of this estimation strategy.

Assumption 1 leads to an important collection of alternative asymptotically equiv-

alent e¢ cient estimators in the context of program evaluation. In this chapter, two

general e¢ cient estimators for the case of multi-valued treatment e¤ects are studied.

The �rst estimator is based on equation (2.3), while the second estimator is based

on a di¤erent moment condition that may be constructed as a linear combination of

equations (2.2), (2.3) and (2.4). These estimators are also asymptotically equivalent

to those available in the literature in the special case of binary treatment e¤ects.

It remains an important open research question to rank the large class of available

semiparametric e¢ cient estimators.

2.1.3 Notation

Before turning to the discussion of e¢ cient estimation in the context of multi-

valued treatment e¤ects, it is convenient to introduce some notation that will simplify

the presentation. Two important functions are: the J + 1 vector-valued function

representing the GPS, denoted by p� (�) = [p�0 (�) ; � � � ; p�J (�)]0, and the (J + 1) dm

vector-valued function of conditional expectations denoted by e� (�; �) = [e�0 (�; �0)
0 ;

� � � ; e�J (�; �J)
0]0, where e�t (X; �t) = E [m (Y (t); �t) j X]. It is assumed that p�t (�) 2 P

and e�t (�; �t) 2 E for all �t 2 B and t 2 T , where P and E represent some space of

(smooth) functions. For simplicity, in the remaining parts of Chapter 2 and 3 the

arguments of the functions considered are dropped whenever it is clear from the
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context.

Let j�j denote the matrix norm given by jAj =
p
trace (A0A) for any matrix A.

As for functions, the sup-norm in all arguments is denoted by k�k1. In particular,

for all t 2 T , it is denoted kptk1 = supx2X jpt (x)j for some pt 2 P, ket (�t)k1 =

supx2X jet (x; �t)j and ketk1 = sup�2B;x2X jet (x; �t)j for some et (�t) 2 E , and simi-

larly for the vector-valued functions p and e. Later in this chapter the class of func-

tions considered will be restricted to enable the nonparametric estimation of these

nuisance parameters.

2.2 Semiparametric E¢ ciency Calculations

This section provides basic semiparametric e¢ ciency calculations essential for the

construction of e¢ cient estimators of ��. Semiparametric e¢ ciency theory has re-

ceived considerable attention in econometrics at least since the seminal work of Bickel,

Klaasen, Ritov, and Wellner (1993) (see also Newey (1990) for an excellent survey).

This general theory provides the necessary ingredients for the construction of e¢ cient

estimators of �nite dimensional parameters in the context of semiparametric models

under some mild regularity conditions. First, it provides the analogue concept of the

Cramer-Rao Lower Bound for semiparametric models, that is, an e¢ ciency bench-

mark for regular estimators of the population parameter of interest. Second, and more

importantly, it provides a way of constructing e¢ cient estimators using the e¢ cient

in�uence function or the e¢ cient score of the model. In the simplest possible case,
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the construction of an e¢ cient estimator starts by deriving the EIF in the statistical

model and then verifying that the proposed estimator admits an asymptotic linear

representation based on this function. This chapter uses these ideas to verify that

the estimators considered are in fact e¢ cient.

Several semiparametric e¢ ciency calculations are available in the literature when

some form of Assumption 1 holds. In the context of program evaluation with binary

treatments, e¢ cient in�uence functions and e¢ ciency bounds have been computed

by Hahn (1998), Hirano, Imbens, and Ridder (2003) and Firpo (2007) for average

and quantile treatment e¤ect parameters using the methodology outlined in Bickel,

Klaasen, Ritov, and Wellner (1993). In models of missing data, Robins, Rotnitzky,

and Zhao (1994) and Robins and Rotnitzky (1995) develop a general methodology to

construct e¢ cient scores and compute the corresponding e¢ ciency bounds when the

missingness indicator is binary. In a recent contribution, Chen, Hong, and Tarozzi

(2007) provide semiparametric e¢ ciency calculations for GMM models in the context

of nonclassical measurement error with one auxiliary sample. The results presented

in this section cover all these cases by considering a multi-level missing mechanism

in a GMM model. In Chapter 3, it is discussed how the e¢ ciency bounds derived in

the program evaluation literature may be recovered from the calculations presented

here.

Assumption 2 For all t 2 T ,

(a) E[jm (Y (t); �t)j
2] < 1 and E [m (Y (t); �t)] is di¤erentiable in �t 2 B at ��t ;
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and

(b) rank (��) = (J + 1) d�, where

�� =

266666666664

��0 0 � � � 0

0 ��1 � � � 0

...
...

. . .
...

0 0 � � � ��J

377777777775
,

where 0 is a (dm � d�) matrix of zeros and

��t =
@

@�0t
E [m (Y (t); �t)]

����
�t=�

�
t

.

The main role of Assumption 2 (together with part (b) of Assumption 1) is to

ensure that the bound is �nite. The full column rank assumption on the gradient

matrix �� guarantees a local identi�cation condition necessary for the semiparametric

calculations. A key necessary requirement to provide semiparametric calculations is

to establish the pathwise di¤erentiability of the population parameter of interest,

which is done in Appendix A under this assumption (and Assumption 1).

The following theorem provides the general form of the EIF and SPEB for the

model considered in this chapter.

Theorem 1 (EIF and SPEB) Let Assumptions 1 and 2 hold. Then the EIF for

any regular estimator of �� is given by

	(y; t; x; ��; p�; e� (��)) = �
�
�0�V

�1
� ��

��1
�0�V

�1
�  (y; t; x; ��; p�; e� (��)) ,
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where  (y; t; x; ��; p�; e� (��)) = m (y; t; x; ��; p�)� � (t; x; ��; p�; e� (��)) and

V� = V [ (Y; T;X; ��; p�; e� (��))] .

Consequently, the SPEB for any regular estimator of �� is given by

V � =
�
�0�V

�1
� ��

��1
:

The results in Theorem 1 may be directly compared to those presented in Newey

(1994). This leads to a natural interpretation for the EIF, where the vector-valued

function � (�) corresponds to the �adjustment term� in the in�uence function due

to the presence of the unknown nuisance parameter (GPS) when the estimator is

constructed from the sample analogue of the moment condition given by equation

(2.3). This interpretation is used below to compare the two estimators considered in

this chapter.

It is possible to provide additional intuition for the structure of the SPEB after

noting that

V� = E [V [m (Y; T;X; ��; p�) j X]] + E
�
e� (X; ��) e� (X; ��)0

�
. (2.5)

Using this decomposition, it is seen how the results in Theorem 1 may be interpreted

as the multi-level generalization of the SPEB in Theorem 1 of Chen, Hong, and

Tarozzi (2007) in the context of measurement error with �verify-in-sample�auxiliary

data. Extending the results of Hahn (1998) and Chen, Hong, and Tarozzi (2007) to

the context of multi-valued treatments, it is possible to verify that (i) the GPS is
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ancillary for the estimation of �� (i.e., the SPEB does not change whether or not the

GPS it is assumed to be known), and (ii) if the distribution of X is known or correctly

speci�ed the SPEB is reduced (in particular, if the distribution of X is assumed to be

known, then the second term in equation (2.5) drops out). Details for these results

are not provided to conserve space.

It is important to note that these calculations have explicitly allowed for the

components ��0; � � � ; ��J of the population parameter �� to be di¤erent. Under this

assumption, the SPEB obtained in Theorem 1 will be in general larger than the

one that would have been obtained had ��0 = � � � = ��J been imposed. Since the

main goal is to estimate e¢ ciently the components of �� (i.e., treatment e¤ects), the

result presented in Theorem 1 seems to be the most appropriate. The SPEB for the

�restricted�case may be easily obtained by similar derivations to those presented in

Appendix A.

One important simpli�cation in Theorem 1 is achieved in the important case of

exact identi�cation:

Corollary 2 If dm = d�, then Theorem 1 implies that the EIF for any regular esti-

mator of �� is given by

	(y; t; x; ��; p�; e� (��)) = ��1�  (y; t; x; ��; p�; e� (��)) .

Consequently, the SPEB for any regular estimator of �� is given by

V � = ��1� V��
0�1
� :
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Notice further that in this case, �� = diag (��0; � � � ;��J). The result in Corollary 2 is

important because it shows that in the just-identi�ed case the EIF may be constructed

by collecting in a single vector the EIF�s corresponding to each ��0; � � � ; ��J . Moreover,

using this result, it follows that in the just-identi�ed case it is possible to estimate

e¢ ciently �� by estimating each ��0; � � � ; ��J independently. This result is discussed

further below.

2.3 Estimation Procedures

In this chapter two estimators for the multi-valued treatment e¤ects are consid-

ered. The �rst estimation procedure uses an IPW approach and is based on equation

(2.3), while the second estimation procedure combines the IPW and imputation ap-

proaches and is based on the EIF derived in Theorem 1. For simplicity, in the over-

identi�ed case the construction does not use continuously updated GMM but rather

uses a consistent estimator of the corresponding weighting matrix.4 In particular, as-

sume that An is a (J + 1) d�� (J + 1) dm (random) matrix such that An = A+ op (1)

for some positive semide�nite matrix W = A0A.

4A generalization to a continuously updated GMM model is straightforward provided the corre-
sponding additional regularity conditions are imposed.
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2.3.1 Inverse Probability Weighting Estimator (IPWE)

It is possible to motivate this procedure by a simple sample analog principle. Re-

call that the goal is to estimate the parameters implicitly de�ned by the moment con-

ditions E [m (Y (t); ��t )] = 0 for all t 2 T . Had the random variables (Y (0); � � � ; Y (J))

been observed, a natural estimator would simply solve the sample analog counterpart

of the J + 1 moment conditions leading to a standard GMM estimation procedure.

Unfortunately, due to the presence of the missingness mechanism, it is impossible to

perform such estimation since only Y is observed. Instead, it is possible to use the

result in Equation (2.3) to obtain a moment condition based only on observed random

variables. This alternative has the drawback that now the feasible moment condi-

tions involve both the �nite dimensional parameter of interest, ��, and an in�nite

dimensional nuisance parameter (GPS). This reasoning suggests that if a preliminary

estimator for the GPS that converges to the true GPS su¢ ciently fast may be con-

structed, then it would still be possible to consistently estimate the �nite dimensional

parameter of interest.

Using these ideas, a simple semiparametric two-step GMM estimation procedure

may be considered where the parameter �� is estimated after a preliminary nonpara-

metric estimator for the GPS has been constructed. In particular, to save notation,

de�ne the moment condition

M IPW (�; p) = E [m (Y; T;X; �; p)] ,
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and its sample analogue

M IPW
n (�; p) =

1

n

nX
i=1

m (Yi; Ti; Xi; �; p) .

Formally the IPWE may be described by the following steps. First, construct

a nonparametric estimator of the GPS based on the full sample, which is denoted

p̂ = [p̂0; � � � ; p̂J ]0. Second, the IPWE for �� is given by

�̂
IPW

= arg min
�2BJ+1

��AnM IPW
n (�; p̂)

��+ op(n
�1=2).

This estimation procedure has the important advantage of being based only on

the nonparametric estimator of the GPS. Note that the in�nite dimensional com-

ponent does not depend on � and therefore it needs to be estimated only once to

form the GMM problem, leading to a very simple two-step procedure. On the other

hand, this estimation procedure has an important drawback based on its construc-

tion. Because it only involves the �rst part of the EIF derived previously, to ensure its

semiparametric e¢ ciency the nonparametric estimator p̂ will have to play two roles

simultaneously: not only does it have to approximate p� fast enough, but it also has

to do it in such a way that the limiting GMM problem becomes a GMM problem

based on the EIF. For example, as pointed out by Hirano, Imbens, and Ridder (2003)

in the model of binary treatment e¤ects, the extreme case where p̂ = p� will not lead

in general to an e¢ cient estimator because this procedure will be solving the incorrect

GMM problem. The necessary requirements on p̂ will be made explicit below when

studying the large sample properties of this estimator.5

5The role of the propensity score and how information about it may be e¢ ciently incorporated in
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For the just-identi�ed case, the procedure leading to the IPWE is equivalent to

solving

�̂
IPW

t = argmin
�2B

����� 1n
nX
i=1

Dt;im (Yi; �t)

p̂t (Xi)

�����+ op(n
�1=2), 8t 2 T ,

which leads to a very simple estimator.

2.3.2 E¢ cient In�uence Function Estimator (EIFE)

This estimator is based on the EIF derived in Theorem 1. This procedure can also

be motivated by the analogue principle after observing that E [ (Y; T;X; �; p; e (�))] =

0 if and only if � = ��, p = p� and e = e�. In words, the EIF provides another col-

lection of moment conditions that can be exploited to obtain a GMM estimator.

Inspection of E [ (Y; T;X; �; p; e (�))] shows that its sample analogue corresponds

to a linear combination of three sample analogues already discussed in the literature

for the special case of binary treatment e¤ects. In particular, this moment condition

includes (i) the moment condition leading to an IPW estimator, (ii) the moment con-

dition leading to a nonparametric version of the doubly robust estimator, and (iii)

the moment condition leading to an imputation estimator.

To describe the estimator, de�ne the moment condition

MEIF (�; p; e (�)) = E [ (Y; T;X; �; p; e (�))] ,

semiparametric models have received considerable attention in the literature of program evaluation
and related areas of study. See, e.g., Hahn (1998), Heckman, Ichimura, and Todd (1998), Hirano,
Imbens, and Ridder (2003), and Chen, Hong, and Tarozzi (2007), among others, for a discussion on
this topic.



www.manaraa.com

24

and its sample analogue

MEIF
n (�; p; e (�)) =

1

n

nX
i=1

 (Yi; Ti; Xi; �; p; e (�)) .

Formally the EIFE may be described by the following steps. First, construct a

nonparametric estimator of the GPS, denoted p̂ = [p̂0; � � � ; p̂J ]0, and for each � 2 B

construct a nonparametric estimator of e (�), denoted ê (�) = [ê0 (�)
0 ; � � � ; êJ (�)0]0.

Second, the EIFE for �� is given by

�̂
EIF

= arg min
�2BJ+1

��AnMEIF
n (�; p̂; ê (�))

��+ op(n
�1=2).

This estimator appears to be in general more complicated than the IPWE because

it requires the nonparametric estimation of two in�nite dimensional parameters, one of

which is a function of � itself. On the other hand, it has the attractive feature of being

based on the EIF and therefore each nonparametric estimator would only be required

to have the intuitive role of approximating well its own population counterpart. For

example, it is now possible to consider the extreme case of p̂ = p� and still obtain an

e¢ cient estimator, as discussed below.6

As in the case of the IPWE, in the just-identi�ed case this procedure is equivalent

to solve for all t 2 T ,

�̂
EIF

t = argmin
�t2B

����� 1n
nX
i=1

Dt;im (Yi; �t)� êt (Xi; �t) (Dt;i � p̂t (Xi))

p̂t (Xi)

�����+ op(n
�1=2).

6It is important to note that this is not the only way in which information about the (generalized)
propensity score may be incorporated in semiparametric e¢ cient estimators. For two other examples,
see the recent work of Chen, Hong, and Tarozzi (2007) in the context of measurement error models.
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2.4 Large Sample Properties

This section presents the main large sample results of the chapter in four stages.

First, consistency of both the IPWE and EIFE is established under mild regularity

conditions. Second, su¢ cient conditions are provided that guarantee asymptotic nor-

mality and e¢ ciency of the IPWE and EIFE for any nonparametric estimators of

the in�nite dimensional nuisance parameters based on a set of high-level conditions.

Third, estimators for the di¤erent components of the SPEB derived in Theorem 1 are

constructed. Finally, it is discussed how other population parameters of interest may

be e¢ ciently estimated and/or optimal inference may be performed based on these

general results.

The large sample theory presented here is based on the work of Pakes and Pollard

(1989).7 In the following discussion, terminology and results from the modern theory

of empirical processes will be repeatedly employed. For consistency and to simplify

the exposition, all references to this literature are based on van der Vaart and Wellner

(1996) (see also Andrews (1994) and van der Vaart (1998) for excellent reviews on

this topic).

7Alternatively, it is possible to apply the general large sample theory of Chen, Linton, and van
Keilegom (2003). However, because in the case under study the criterion function is smooth in the
in�nite dimensional nuisance parameters, the results from Pakes and Pollard (1989) turn out to be
su¢ cient.
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2.4.1 Consistency

Consistency of the IPW estimator will follow from two mild conditions imposed

on the underlying identifying function m (�; �):

Assumption 3 For all t 2 T ,

(a) the class of functions fm (�; �t) : �t 2 Bg is Glivenko-Cantelli, and

(b) E[ sup�t2B jm (Y (t); �t)j] <1.

Part (a) of Assumption 3 restricts the class of functions that may be considered to

implicitly de�ne the population parameter of interest. Functions in this class enjoy

an important property: sample averages of these functions are uniform consistent

in � for their population mean. Although consistency may be established by other

means, requiring an uniform consistency property of the underlying sample moment

conditions is standard in the GMM literature. Newey and McFadden (1994) discuss

this and other related conditions. A simple set of su¢ cient conditions for Assumption

3(a) are B compact, m (�; �t) continuous in �t, and Assumption 3(b). Although this

set of conditions is reasonably weak, it is still stronger than necessary. In fact, to

cover interesting nonsmooth cases (such as quantiles) it is necessary to rely on slightly

stronger results such as those presented in the empirical process literature. From this

literature, many classes of functions are known to be Glivenko-Cantelli and many

other classes may be formed by some �permanence�theorem.8 Part (b) of Assumption

8Primitive conditions that ensure a given class of functions to be Glivenko-Cantelli (or Donsker)
usually involve some explicit assumption concerning the �size� of the class as measured by some
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3 is a usual dominance condition.

Theorem 3 (Consistency of IPWE) Let Assumptions 1 and 3 hold. Assume the

following additional condition holds:

(3.1) kp̂� p�k1 = op (1).

Then, �̂
IPW

= �� + op (1).

The additional condition (3.1) in Theorem 3 is very weak, requiring only that the

nonparametric estimator of the GPS is uniformly consistent.

Next, consider the EIFE. For this estimator, assume additionally:

Assumption 4 For all t 2 T , the class of functions fe�t (�; �t) : �t 2 Bg is Glivenko-

Cantelli.

Assumption 4 captures the ideas implied by Assumption 3(a). In this case, how-

ever, this assumption may be easier to verify because the functions e�t (�; �t) are condi-

tional expectations and therefore it is natural to assume they are smooth in �t. Thus,

verifying the underlying uniform consistency requirement should be straightforward

in this case, possibly after imposing some additional mild regularity conditions.

Theorem 4 (Consistency of EIFE) Let Assumptions 1, 3, and 4 hold. Assume

the following additional condition holds:

version of the entropy numbers. For a recent example in the context of GMM estimation see Ai and
Chen (2003).
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(4.1) kp̂� p�k1 = op (1) and kê� e�k1 = op (1).

Then, �̂
EIF

= �� + op (1).

Since now the full EIF is used to construct the estimator, it is natural to observe

that Theorem 4 also requires the nonparametric estimator ê to be uniformly consistent

for e� in both arguments (the covariates X and the parameter �). This condition is

still weak and reasonable for most nonparametric estimators.

2.4.2 Asymptotic Normality and E¢ ciency

It is now possible to discuss the conditions needed to establish the limiting distri-

bution and e¢ ciency of the two estimators considered in this chapter. First, a set of

su¢ cient conditions for the IPWE is given:

Assumption 5 For all t 2 T and some � > 0:

(a) fm (�; �t) : j�t � ��t j < �g is a Donsker class;

(b) E[ jm (Y (t); �t)�m (Y (t); ��t )j
2]! 0 as �t ! ��t ;

(c) there exists a constant C > 0 such that

E [jm (Y (t); �t)�m (Y (t); ��t )j] � C j�t � ��t j

for all �t with j�t � ��t j < �; and

(d) E[ supj�t���t j<� jm (Y (t); �t)j
2] <1.
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Similar to the requirement for consistency, Part (a) of Assumption 5 restricts

the class of functions de�ning the population parameter of interest that may be

considered. This assumption is standard from the empirical process literature and

ensures that an uniform (in �t) central limit theorem hold. In turn, this result together

with part (b) and part (c) will ensure that a certain stochastic equicontinuity condition

apply, which allows to obtain an asymptotic linear representation for the estimator.

For most applications, Assumption 5(a) is already established or can be easily veri�ed

by some �permanence theorem�. Assumptions 5(b) and 5(c) are standard in the

literature and may be veri�ed directly, while Assumption 5(d) is a usual dominance

condition.

Theorem 5 (Asymptotic Linear Representation, IPWE) Let �� 2 int(BJ+1)

�̂
IPW

= �� + op (1), and Assumptions 1, 2, and 5 hold. Assume the following addi-

tional conditions hold:

(5.1) kp̂� p�k1 = op
�
n�1=4

�
.

(5.2) M IPW
n (��; p̂) =MEIF

n (��; p�; e� (��)) + op
�
n�1=2

�
.

Then,

�̂
IPW � �� = � (�0�W��)

�1
�0�WMEIF

n (��; p�; e� (��)) + op(n
�1=2).

Asymptotic normality of �̂
IPW

follows directly from Theorem 5 while e¢ ciency is

easily obtained by an appropriate choice of the limiting weighting matrix W . This
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theorem requires two important additional conditions involving the estimator of the

GPS. These conditions imply certain restrictions in terms of smoothness for the class

of functions P and E , depending on the nonparametric estimator chosen and the

dimension of X .

Condition (5.1) is standard in the literature and imposes a lower bound in the

uniform rate of convergence of p̂. Condition (5.2) is crucial. This condition involves

the sample moment condition (at � = ��) and the nonparametric estimator, and re-

quires a particular linear expansion based on the EIF to hold. Newey (1994) provides

an in-depth general discussion of this particular condition and outlines high-level

assumptions that ensure this condition holds. This assumption is very important be-

cause it employs the exact form of the EIF to guarantee that the resulting estimator

is e¢ cient (provided the weighting matrix is chosen appropriately). If condition (5.2)

holds for a function di¤erent than MEIF
n (��; p�; e� (��)), then the estimator cannot

be e¢ cient. For example, if the GPS is known and p̂ = p� is replaced inM IPW
n (��; p̂)

when constructing the estimation procedure, then the resulting estimator will not

be e¢ cient as mentioned before. In this sense, Condition (5.2) imposes an upper

bound on the uniform rate of convergence of p̂. Intuitively, this is due to the fact

that p̂ plays two roles simultaneously: it estimates nonparametrically p�, and it also

nonparametrically approximates the correction term � (�; p; e (�)) present in the EIF.

Consequently, even if the GPS is known, one may obtain an e¢ cient estimator only

if the GPS is nonparametrically estimated.
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One way to avoid requiring p̂ to play this dual role is to consider the full EIF,

which leads to the EIFE. This estimator will be asymptotically normal if the following

additional assumption holds:

Assumption 6 For all t 2 T , some � > 0, and for all x 2 X and all �t such that

j�t � ��t j < �:

(a) e�t (x; �t) is continuously di¤erentiable with derivative given by @�te
�
t (x; �t) �

@
@�t
e�t (x; �t) with E[ supj�t���t j<�

��@�te�t (X; �t)��] <1; and
(b) there exists � > 0 and a measurable function b (x), with E [jb (X)j] <1, such

that ��@�tet (x; �t)� @�te
�
t (x; �t)

�� � b (x) ket � e�tk
�
1

for all functions et (�t) 2 E such that ket � e�tk1 < �.

Assumption 6 basically restricts the class of functions G = fet : et (�) 2 E ,

ket � e�tk1 < � and j�t � ��t j < �g, where e�t 2 G by construction. Part (a) of this

assumption is simple and natural, requiring only mild smoothness conditions of the

conditional expectation et (�t) in �t as well as a usual dominance condition. Note that

this part of the assumption will imply the smoothness requirement in Assumption 2

whenever integration and di¤erentiation can be interchanged. Part (b) of Assump-

tion 6 further restricts the possible class of functions by requiring that functions that

are uniformly close also have their derivatives close. This special technical require-

ment has also been used by Chen, Hong, and Tamer (2005) and Chen, Hong, and
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Tarozzi (2007) in the context of nonclassical measurement error. Assumption 6(b) is

imposed because uniform convergence is not enough to ensure uniform convergence

of derivatives, a result needed in the proof of the following theorem.

Theorem 6 (Asymptotic Linear Representation, EIFE) Let �� 2 int(BJ+1),

�̂
EIF

= �� + op (1) and Assumptions 1, 2, 5 and 6 hold. Assume the following

additional conditions hold:

(6.1) kp̂� p�k1 = op
�
n�1=4

�
.

(6.2) supj����j<� kê (�)� e� (�)k1 = op (1), for some � > 0.

(6.3) MEIF
n (��; p̂; ê (��)) =MEIF

n (��; p�; e� (��)) + op(n
�1=2).

Then,

�̂
EIF � �� = � (�0�W��)

�1
�0�WMEIF

n (��; p�; e� (��)) + op
�
n�1=2

�
.

Asymptotic normality of �̂
EIF

also follows directly from Theorem 6. This time,

three additional conditions involving the nonparametric estimators are imposed. Con-

dition (6.1) is the same as Condition (5.1) in Theorem 5. Condition (6.2) further

requires uniform consistency of the nonparametric estimator of e� in both arguments,

although in this case no particular rate is required. This result follows from the ad-

ditional smoothness assumptions imposed in this theorem. Finally, Condition (6.3)

is the analogue of Condition (5.2) in Theorem 5, although much easier to verify in

general. In this case, additional knowledge about the GPS may be easily incorporated
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in the estimation without a¤ecting the asymptotic variance, provided the asymptotic

linear representation continues to hold.

E¢ ciency of the estimators follows directly from Theorems 5 and 6:

Corollary 7 If dm = d� (just-identi�ed case) or W = V �1
� (as given in Theorem 1),

then the IPWE and EIFE are e¢ cient for ��.

This corollary distinguishes two cases. First, if the problem is exactly identi-

�ed, then the estimators are e¢ cient without further work. Second, if the problem

is over-identi�ed, then a consistent estimator of the matrix V �1
� is needed, generat-

ing an intermediate step in the construction of the GMM problems for the IPWE

and the EIFE. A consistent estimator for V �1
� is easy to construct without further

assumptions, as shown next.

2.4.3 OptimalWeightingMatrix and Uncertainty Estimation

The next step in the construction of a feasible estimation procedure is to consider

the estimation of V� and ��, the variance of the EIF and the �sandwich� matrix

appearing in the SPEB, respectively. For the over-identi�ed case, estimation of V� is

crucial since the square-root of this matrix is the optimal weighting matrix of both

GMM problems.

The natural plug-in estimator of V� is given by

Vn =
1

n

nX
i=1

 (Yi; Ti; Xi; �̂; p̂; ê(�̂)) (Yi; Ti; Xi; �̂; p̂; ê(�̂))
0,
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for some consistent estimator �̂ of ��.

Theorem 8 gives a set of simple su¢ cient conditions that ensure V̂n is consistent

for V�.

Theorem 8 (Consistent Estimator of V �) Let Assumptions 1, 2, 5, and 6(a)

with E[ supj�t���t j<�
��@�te�t (X; �t)��2] <1 hold. If �̂ = �� + op (1), kp̂� p�k1 = op (1)

and supj����j<� kê (�)� e� (�)k1 = op (1), for some � > 0, then Vn = V� + op (1).

Observe that the conditions imposed in Theorem 8 are the same as those assumed

in Theorem 5 plus the mild smoothness and dominance condition on e�.

Next, consider the estimation of ��. Because this matrix has a very particular

structure there are several simple alternative approaches to construct a consistent

estimator. For example, it is possible to consider a numerical derivative approach

directly applied to the sample analogue (e.g., Pakes and Pollard (1989)) or, in some

cases, the estimator may be constructed by taking into consideration the explicit

form of the matrix (for an example, see the second estimand presented in Chapter 3).

As a third alternative, it is also possible to construct a generic estimator, under the

assumptions already imposed, if integration and di¤erentiation can be interchanged.

In this case, it is seen that for all t 2 T ,

��t =
@

@�t
E [m (Y (t); �t)]

����
�t=�

�
t

= E

"
@

@�t
et (X; �t)

����
�t=�

�
t

#
,

which suggests the plug-in estimator given by

�̂t;n =
1

n

nX
i=1

@

@�t
êt (X; �t)

����
�t=�̂t

.
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Consistency of this plug-in estimator is veri�ed in the following theorem.

Theorem 9 (Consistent Estimator of ��) Let Assumptions 1, 2, 6 hold. If

�̂ = �� + op (1) and supj����j<� kê (�)� e� (�)k1 = op (1), for some � > 0, then

�̂t;n = �
�
t + op (1).

From Theorem 9 it is straightforward to form a consistent estimator of the gradient

matrix ��.

2.4.4 Other Population Parameters and Optimal Inference

The results presented in this chapter so far allow for the joint e¢ cient estimation

of several multi-valued treatment e¤ects. For instance, using the discussed proce-

dures it is easy to estimate jointly (and e¢ ciently) several marginal quantiles as well

as the marginal mean of all potential outcomes, as discussed in the next chapter.

However, in many applications the population parameters of interest may be not

only the marginal treatment e¤ects but also other quantities involving possibly more

than one marginal treatment e¤ect. Fortunately, because di¤erentiable transforma-

tions of e¢ cient estimators of Euclidean parameters lead to e¢ cient estimators for

the corresponding population parameters, a simple delta-method argument is su¢ -

cient to easily recover any collection of treatment e¤ects that may be written as (or

approximated by) a di¤erentiable function of the marginal treatment e¤ects.

Using this idea it is possible to e¢ ciently estimate many other treatment e¤ects

such as pairwise comparisons (in the spirit of ATE), di¤erences between pairwise com-
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parisons, incremental ratios, interquantile ranges, quantile ratios or other measures

of di¤erential and heterogeneous treatments e¤ects. Moreover, is possible to also

consider the e¢ cient estimation of the e¤ect of di¤erent treatments on dispersion as

measured by the standard deviation of the potential outcome distribution. These

ideas are exploited further in the next chapter when discussing the leading examples

and the empirical illustration.

Furthermore, because in some applications incorporating additional information

about the treatment e¤ects in a general over-identi�ed model may be challenging, it

is possible to consider an alternative approach to the e¢ cient estimation of multiple

restricted treatment e¤ects. In particular, suppose that the restrictions of interest can

be imposed by writing the marginal treatment e¤ects as a function of the parameters

��, and denote this function by � (��). Then, it can be veri�ed that under mild

regularity conditions an e¢ cient estimator of �� is given by

�̂ = argmin
�
[�̂ � � (�)]0

�
�0nV

�1
n �n

�
[�̂ � � (�)],

where �̂ is an e¢ cient estimator of ��, �n is a consistent estimator of ��, and Vn is a

consistent estimator of V�. In this case, it is not hard to verify that

p
n (�̂ � ��)

d�! N
h
0;
�
@� (��)0 �0�V

�1
� ��@� (�

�)
��1i

,

where @� (��) = @
@�
� (�)

��
�=��

. From this result, a consistent estimator of the covari-

ance matrix of �̂ may be constructed using a plug-in approach.

Finally, because testing procedures based on e¢ cient estimators are optimal (pos-
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sibly after restricting the class of allowed tests), it is straightforward to perform op-

timal testing of di¤erent hypotheses concerning multi-valued treatment e¤ects. This

can be done within and across treatment levels for marginal treatment e¤ects, for

treatment e¤ects obtained by means of some (di¤erentiable) transformation of these

parameters, and for restricted treatment e¤ects by relying on standard testing strate-

gies.
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Chapter 3

E¢ cient Semiparametric

Estimation of Multi-valued

Treatment E¤ects

Chapter 2 developed a general theory for the e¢ cient estimation of multi-valued

treatment e¤ects. This chapter specializes these general results to two leading exam-

ples: Marginal Mean Treatment E¤ects (MMTE) and Marginal Quantile Treatment

E¤ects (MQTE). It is shown how the general conditions developed in Chapter 2 may

be applied directly to these examples, and how available results in the literature of

program evaluation may be seen as particular cases of the �ndings reported in Chapter

2 when considering these examples.

Further, since the estimation procedures introduced in Chapter 2 involve in�nite
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dimensional nuisance parameters, a nonparametric estimation procedure for these nui-

sance parameters appropriate for the problem under study is also discussed. These

additional results e¤ectively outline a full data-driven procedure for the e¢ cient es-

timation of ��. In particular, in this case results from the nonparametric series (or

sieve) estimation literature may be applied directly. However, since the GPS is a

conditional probability a new nonparametric estimator, labeled Multinomial Logistic

Series Estimator, is proposed which is based on series estimation and captures the

speci�c features of this nuisance parameter. This estimator generalizes the nonpara-

metric estimator for the propensity score introduced by Hirano, Imbens, and Ridder

(2003) and may be interpreted as a nonlinear sieve procedure (Chen (2007)) having

the key advantage of providing predicted positive probabilities that add up to one.

Using these nonparametric estimators, simple primitive conditions that guarantee the

e¢ cient estimation of general multi-valued treatment e¤ects are provided.

Finally, to illustrate the results the last portion of this chapter reports a brief

empirical study of the e¤ect of maternal smoking intensity on birth weight that ex-

tends the analysis of Almond, Chay, and Lee (2005). These authors study the costs

of low birth weight using di¤erent non-experimental techniques and �nd an impor-

tant negative e¤ect of maternal smoking on birth weight de�ning maternal smoking

as a binary treatment. Exploiting the fact that their rich database includes the

number of cigarettes-per-day smoked by the mother, the analysis is extended to a

multi-valued treatment setup which studies the e¤ect of maternal smoking intensity
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on birth weight. Somehow surprising, the main �ndings suggest the presence of a

nonlinear negative e¤ect where two thirds of the full impact of smoking on birth

weight are due to the �rst 5 cigarettes, while the remaining third is explained by

the next 5 cigarettes with no important e¤ects beyond the tenth cigarette-per-day

smoked. Moreover, these e¤ects appear to be additive, shifting parallelly the entire

distribution of birth weight along smoking intensity.

3.1 Leading Examples

3.1.1 Marginal Mean Treatment E¤ects

The �rst leading example captures the idea of a canonical population parameter

of interest in the literature of Biostatistics, Public Health and Medicine, among other

�elds. This population parameter, sometimes called the Dose-Response Function,

re�ects the mean response for each treatment level and, in the context of program

evaluation, may be seen as an extension of the ATE. The MMTE is denoted by

�� = [��0; �
�
1; � � � ; ��J ]

0 and solves equation (2.1) with m (Y (t); X;�t) = Y (t)� �t, for

all t 2 T , which leads to ��t = E [Y (t)].

Observe that in this case identi�cation follows immediately after assuming a �nite

�rst moment of the potential outcomes. Next, assume E[Y (t)2] < 1 and note that

��t = 1 for all t 2 T in this case. Thus, Assumption 2 is satis�ed and Theorem 1
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implies that the SPEB for the MMTE is given by V � with typical (i; j)-th element

V �
[i;j] = E

�
1 fi = jg �

2
i (X)

p�i (X)
+ (�i (X)� ��i )

�
�j (X)� ��j

��
,

where �2i (X) = V [Y (i) j X], �i (X) = E [Y (i) j X], for all i 2 T .

In terms of the estimation procedures, it is possible to obtain a closed-form solution

for this estimand for both IPWE and EIFE. In particular, IPWE is given by

�̂IPWt =

 
nX
i=1

Dt;i

p̂t (Xi)

!�1 nX
i=1

Dt;iYi
p̂t (Xi)

,

which corresponds to a properly re-weighted average for each t 2 T , while the EIFE

is given by

�̂EIFt =
1

n

nX
i=1

Dt;iYi � �̂t (Xi) (Dt;i � p̂t (Xi))

p̂t (Xi)
,

where �̂t (x) represents some nonparametric estimator of �
�
t (x).

Next, to establish the large sample results �rst assume that B is compact and

E [jY (t)j] <1 for all t 2 T . Assumption 3 follows directly because the class of func-

tions f(� � �t) : �t 2 Bg is Glivenko-Cantelli. Therefore, Theorem 3 implies �̂IPW =

��+op (1), while the class of functions f(��t (�)� �t) : �t 2 Bg is also Glivenko-Cantelli

and Theorem 4 implies �̂EIF = �� + op (1).

Now, the class of functions f(� � �t) : j�t � ��t j < �g is Donsker and in this case

E[jm (Y (t) ;�t)�m (Y (t) ;��t ) j] = j�t � ��t j, giving Assumption 5. Thus, under the

conditions of Theorem 5 and Corollary 7 it follows that

p
n(�̂IPW � ��)

d�! N (0; V �) ;
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and the estimator �̂IPW is e¢ cient. Further, in this case Assumption 6 is trivially

satis�ed and therefore under the conditions of Theorem 6 and Corollary 7 it is ob-

tained

p
n(�̂EIF � ��)

d�! N (0; V �) ;

and the estimator �̂EIF is also e¢ cient.

Finally, note that if T = f0; 1g and because the ATE can be written as �ATE �

E [Y (1)] � E [Y (0)] = v0��, where v = (�1; 1)0, using Theorem 1 it is easy to verify

that

V � = E

2664
�20(X)

p0(X)
+ (�0 (X)� ��0)

2 (�0 (X)� ��0) (�1 (X)� ��1)

(�0 (X)� ��0) (�1 (X)� ��1)
�21(X)

p1(X)
+ (�1 (X)� ��1)

2

3775 .
Then, either Theorem 5 or Theorem 6 and the transformation g (z) = v0z gives

p
n
�
�̂ATE ��ATE

�
d�! N [0; v0V �v] ,

where

v0V �v = E
�
�20 (X)

p (0; X)
+

�21 (X)

p (1; X)
+
�
�ATE (X)��ATE

�2�
,

and �ATE (X) = �1 (X)� �0 (X). In this case, the asymptotic variance is the SPEB

found by Hahn (1998) and the resulting estimator in the case of Theorem 5 is essen-

tially the same as the one considered in Hirano, Imbens, and Ridder (2003) (see also

Imbens, Newey, and Ridder (2006) for another similar modi�cation of this estimator).
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3.1.2 Marginal Quantile Treatment E¤ects

Characterizing distributional impacts of a multi-valued treatment is crucial be-

cause these e¤ects are closely related to usual inequality and heterogeneity measures.

The second leading example captures this idea by looking at the treatment e¤ect

at di¤erent quantiles of the outcome variable. For some � 2 (0; 1), the MQTE is

denoted by q� (�) = [q�0 (�) ; q
�
1 (�) ; � � � ; q�J (�)]

0 and it is assumed to solve equation

(2.1) with m (Y (t); qt (�)) = 1 fY (t) � qt (�)g � � , for all t 2 T , which leads to

q�t (�) 2 inf
�
q : FY (t) (q) � �

	
, where FY (t) is the c.d.f. of Y (t). In this case, a simple

su¢ cient condition for identi�cation is that Y (t) be a continuous random variable

with density fY (t) (q�t (�)) > 0.

Using Leibniz�s rule ��t = f �Y (t) (q
�
t (�)) for t 2 T , which was assumed strictly

positive. Thus, Assumption 2 is satis�ed and Theorem 1 implies that the SPEB for

the MQTE is given by V � with typical (i; j)-th element

V �
[i;j] = E

"
1 fi = jg �2i (X; �)

f �Y (i) (q
�
i (�))

2 p�i (X)
+

qi (X; �) qj (X; �)

f �Y (i) (q
�
i (�)) fY (j)

�
q�j (�)

�# ,
where

�2i (X; �) = V [1 fY (i) � q�i (�)g j X] ;

qi (X; �) = E [1 fY (i) � q�i (�)g � � j X] ;

for all i 2 T .

In terms of the estimation procedures, in this case it is not possible to obtain

a closed-form solution to the minimization problem. Thus, the estimator solves for
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�xed � 2 (0; 1),

q̂IPWt (�) = argmin
q2B

����� 1n
nX
i=1

Dt;i (1 fYi � qg � �)

p̂t (Xi)

�����
for all t 2 T in the case of IPWE, while the EIFE is given by, for �xed � 2 (0; 1),

q̂EIFt (�) = argmin
qt2B

����� 1n
nX
i=1

Dt;i (1 fYi � qtg � �)� (F̂Y (t) (qtjXi)� �) (Dt;i � p̂t (Xi))

p̂t (Xi)

�����
for t 2 T , where e�t (X; �t) = F �Y (t) (qt (�) j X)� � and F̂Y (t) (y j x) represents some

nonparametric estimator of F �Y (t) (y j x).

Next, to establish the large sample results �rst note that Assumption 3 follows

immediately because the class of functions f(1 f� � qtg � �) : qt 2 Bg is Glivenko-

Cantelli and Theorem 3 gives q̂IPW (�) = q� (�) + op (1), while if the class of func-

tions fF �Y (t) (qt j �) � � : qt 2 Bg is Glivenko-Cantelli, Theorem 4 gives q̂EIF (�) =

q� (�) + op (1). The last requirement may be veri�ed if, for example, B is compact

and F �Y (t) (y j x) is continuous in y for every x.

Now, observe that the class of functions f(1 fy � qt (�)g � �) : jqt (�)�q�t (�) j < �g

is Donsker and

E [jm (Y (t) ; qt (�))�m (Y (t) ; q�t (�))j]

=

Z
j1 fy � qt (�)g � 1 fy � q�t (�)gj dFY (t) (y) � C jqt (�)� q�t (�)j ,

for all qt (�) such that jqt (�)� q�t (�)j < �, for some � > 0, under regularity conditions.

It follows from this calculation that Assumption 5 is satis�ed in this case and under

the conditions of Theorem 5 and Corollary 7 it follows that

p
n(q̂IPW (�)� q� (�))

d�! N (0; V �) ;
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and q̂IPWt (�) is e¢ cient. Turning to Assumption 6, part (a) may be easily veri�ed

under mild regularity conditions because e�t (X; �t) = F �Y (t) (qt (�) j X) � � , while

part (b) requires further restrictions on the class of distribution functions allowed for

in this case. Thus, under regularity conditions, it is veri�ed that

p
n(q̂EIF (�)� q� (�))

d�! N (0; V �) ,

with q̂EIF (�) e¢ cient.

Finally, and similarly as in the case of ATE, if T = f0; 1g and because the QTE

may also be written as �QTE � q�1 (�) � q�0 (�) = v0q� (�), where v = (�1; 1)0, either

Theorem 5 or Theorem 6 gives

p
n
�
�̂QTE ��QTE

�
d�! N [0; v0V �v] .

In this case, the asymptotic variance coincides with the SPEB derived in Firpo

(2007) and the resulting estimator in the case of Theorem 5 corresponds to the Z-

estimator version of Firpo�s estimator for the QTE.

3.1.3 Other Treatment E¤ects

Once e¢ cient estimators of marginal treatment e¤ects are available, it is straight-

forward to derive e¢ cient estimators for other treatment e¤ects of interest whenever

these can be written as a (di¤erentiable) function of the marginal treatment e¤ects.

This general idea was already discussed in the previous chapter. Using the examples

presented above, it is easy to recover e¢ cient estimators of other treatment e¤ects of
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interest such as di¤erential treatment e¤ects or quantile ratios, just to mention two

possibilities.

Furthermore, the general GMM model considered in Chapter 2 allows for further

e¢ ciency gains whenever the treatment e¤ects of interest are over-identi�ed. To �x

ideas, suppose the distribution of Y (t) is assumed to be symmetric for location. In

this case, mean and median coincide and hence there are (at least) two moment

conditions for the same parameter of interest. Thus, the population parameter of

interest solves the following (over-identi�ed) moment condition: m (Y (t); X;#t) =

(Y (t)� #t;1 fY (t) � #tg � 1=2), for all t 2 T . Since this moment condition collects

the moment conditions of the previous examples, the results for this case will follow

from the conditions and results discussed before. On the other hand, it is possible to

use this example to illustrate the idea of solving a minimum distance problem based

on unrestricted e¢ cient estimators as discussed in Chapter 2. In particular, assume

that [��; q� (:5)]0 is e¢ ciently estimated by (say) [�̂; q̂ (:5)]0 (for example, using either

the IPWE or the EIFE). Then, solving

�̂ = argmin
�

2664 �̂� �

q̂ (:5)� �

3775
0 �
�0nV

�1
n �n

�2664 �̂� �

q̂ (:5)� �

3775 ,
gives an e¢ cient estimator of the multi-valued treatment e¤ect for location under

symmetry. This is, �̂t is an e¢ cient estimator of #t, for all t 2 T .

Using this idea it is possible to incorporate additional restrictions on other es-

timands of interest, such as di¤erent quantiles of the underlying distribution of the
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potential outcomes.

3.2 Nonparametric Estimation of Nuisance Para-

meters

Chapter 2 established consistency, asymptotic normality and e¢ ciency for two

estimators of multi-valued treatment e¤ects. These results have been obtained by

imposing high-level assumptions concerning the behavior of the nonparametric esti-

mators used for the estimation of the in�nite dimensional nuisance parameters rather

than by specifying a particular form of such estimators. This section discusses explic-

itly the nonparametric estimation of p� and e� and veri�es the additional high-level

conditions imposed in Theorems 5 and 6.

Since both p� and e� are (possibly high-dimensional) conditional expectations, a

nonparametric series estimator seems an appropriate choice. These estimators are

attractive because they are computational convenient and can incorporate dimension

reduction restrictions easily. This nonparametric estimation procedure has been stud-

ied in detail by Newey (1997) and may be interpreted as a linear sieve estimator as

discussed in Chen (2007). To brie�y describe the estimator, let g (X) = E [Z j X]

for some random variable Z and random vector X 2 X , and let frk (x)g1k=1 be a se-

quence of known approximating functions with the property that a linear combination

of RK (x) = (r1 (x) ; � � � ; rK (x))0 can approximate g (x) for K = 1; 2; � � � . An approx-
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imating function is formed by g (X; K) = RK (X)
0 K and the series estimator based

on an i.i.d. random sample (Zi; Xi), i = 1; 2; � � � ; n, is given by ĝ (X) = g (X; ̂K),

with

̂K = argmin
K

nX
i=1

(Zi � g (Xi; K))
2 ,

where, in this case, the closed-form solution is given by

̂K =

 
nX
i=1

RK (Xi)RK (Xi)
0

!� nX
i=1

RK (Xi)Zi (3.1)

with B� denoting the generalized inverse of the matrix B.

By choosing the approximating basis appropriately and under suitable conditions

on the function g (�) and growth rate ofK it is possible to establish the consistency and

rate of convergence (in both L2 and uniform sense) of this nonparametric estimator.

Two common choices for an approximating basis are power series and splines, leading

to polynomial regression and spline regression, respectively. See Newey (1997) for

further details.

This nonparametric estimator may be used directly to estimate the vector valued

function e�. For all t 2 T , let Z (�t) = m (Y ; �t)
0 and let ̂t;K (�t) be de�ned as

in equation (3.1) but when only the data for T = t is used. Then, for all t 2 T ,

the series nonparametric estimator of e�t (X; �t), �t 2 B, is given by êt (X; �t)
0 =

RK (X)
0 ̂t;K (�t) where

̂t;K (�t) =

 
nX
i=1

Dt;iRK (Xi)RK (Xi)
0

!� nX
i=1

Dt;iRK (Xi)m (Yi; �t)
0 .

Similarly, it is possible to construct a series estimator for p�. However, the GPS is
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not only a conditional expectation but also a conditional probability (i.e., all elements

are positive and add up to one), which imposes additional restrictions that cannot

be captured by this standard nonparametric estimator. Thus, a nonparametric esti-

mator consistent with these additional requirements is preferred. In particular, this

section introduces a generalization of the estimator introduced by Hirano, Imbens,

and Ridder (2003) for the special context of binary treatments, labeled Multinomial

Logistic Series Estimator (MLSE), which may be interpreted as a non-linear sieve

(Chen (2007)) estimation procedure.

Intuitively, since J+1 conditional probabilities are nonparametrically estimated it

is reasonable to embed them within a multinomial logistic model. Using the notation

introduced for series estimation, for all t 2 T , let g
�
X; t;K

�
= RK (X)

0 t;K be the

approximating function and for notational simplicity let K = (
0
0;K ; 

0
1;K ; � � � ; 0J;K)0.

When the coe¢ cients t;K , t 2 T , are chosen as in equation (3.1) with Z = Dt

the usual series estimator for the components of p� is obtained. Alternatively, the

MLSE chooses simultaneously all the vectors in K by solving the maximum likelihood

multinomial logistic problem

̂K = arg max
K j00;K=0K

nX
i=1

JX
t=0

Dt;i log

 
exp

�
g
�
Xi; t;K

�	PJ
j=0 exp

�
g
�
Xi; t;K

�	! ,
where 0K represents a K � 1 vector of zeros used to impose the usual normalization

K;0 = 0K needed to achieve identi�cation in this model. In this case, the nonpara-
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metric estimator p̂ (�) has typical t-th element given by

p̂t (X) =
exp

�
RK (X)

0 ̂t;K
	

1 +
PJ

j=1 exp
�
RK (X)

0 ̂t;K
	 .

It is straightforward to verify that this nonparametric estimator satis�es the ad-

ditional restrictions underlying the GPS. The rates of convergence of this non-linear

sieve estimator are established in Appendix B.

For simplicity and to reduce the notational burden, this section restricts attention

to power series and splines as possible approximation basis and assumes that the same

basis is used for all the nonparametric estimators. The following simple assumption

is enough to establish the appropriate large sample results for both the linear series

estimator and the MLSE.

Assumption 7 For all t 2 T ,

(a) p�t (�) and e�t (�; ��i ) are s times di¤erentiable with s=dx > 2� + 2, where � = 1

or � = 1=2 depending on whether power series or splines are used as basis functions,

respectively;

(b) X is continuously distributed with density bounded and bounded away from

zero on its compact support X ; and

(c) for all t 2 T and some � > 0, V [m (Y (t) ; �t) j X = x] is uniformly bounded

for all x 2 X and all �t such that j�t � ��t j < �.

Part (a) of Assumption 7 provides the exact restrictions needed on the spaces P

and E , describing the minimum smoothness required as a function of the dimension of
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X and the choice of basis of approximation. Part (b) of Assumption 7 restricts X to

be continuous on a compact support with �well-behaved�density. These assumptions

may be relaxed considerably at the expense of some additional notation. For example,

it is possible to allow for some components of X to be discretely distributed and to

permit X to be unbounded by restricting the tail-behavior of the density of X (see

Chen, Hong, and Tamer (2005) for an example). Part (c) of Assumption 7 is standard

from the series (or sieve) nonparametric estimation literature.

Theorem 10 (Nonparametric Estimation) Let Assumptions 1(b) and 7 hold.

Then, conditions (5.1) and (5.2) in Theorem 5, and conditions (6.1), (6.2) and (6.3)

in Theorem 6 are satis�ed by the nonparametric estimators introduced in this section

if K = n� with

1

4s=dx � 4� � 2
< � <

1

4� + 2

where � = 1 or � = 1=2 depending on whether power series or splines are used as

basis functions, respectively.

3.3 Empirical Illustration

To show how the procedures work in practice, this section reports a brief empirical

exercise that studies the e¤ect of maternal smoking during pregnancy on birth weight.

In a recent paper, Almond, Chay, and Lee (2005) (ACL hereafter) present detailed

empirical evidence on the economic costs of low birth weight (LBW). In their paper,
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the authors estimate the direct economic costs imposed by LBW on society and also

study the possible causes of LBW using di¤erent nonexperimental techniques. In

particular, ACL present empirical evidence on the e¤ect of maternal smoking on

birth weight for a rich database of singletons in Pennsylvania and �nd a strong e¤ect

of about 200-250 gram reduction in birth weight using both subclassi�cation on the

propensity score and regression adjusted methods.

The application presented here extends the results of ACL by considering the

e¤ect of maternal smoking intensity during pregnancy on birth weight. The database

used by ACL not only includes almost half a million singleton births and many pre-

intervention covariates, but also records the mother�s declared number of cigarettes-

per-day smoked during pregnancy. This additional information allows to consider

multi-valued treatment e¤ects and address several interesting questions, particularly

relevant from a policy-making perspective. For example, it is assessed whether the

e¤ect of smoking is constant across levels of smoking, whether there exist di¤erential

and/or heterogeneous treatment e¤ects, and whether the variability in birth weight

is a¤ected by smoking intensity.

The empirical illustration uses the same database, response variable and pre-

intervention variables as ACL. In this sample, approximately 80% of mothers did

not smoke during pregnancy, while for the remaining 20% inspection of the empirical

distribution of smoked cigarettes reveals important mass points approximately every

5 cigarettes ranging from 1 to 25. This feature suggests considering 5-cigarette bins
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as a starting point for the empirical analysis. The number of smoked cigarettes

were collapsed into 6 categories (J = 5) {0, 1-5, 6-10, 11-15, 16-20, 21+} and joint

estimation of �ve quantiles (:9,:75,:5,:25,:1), the mean and standard deviation for

each potential outcome, leading to 42 treatment e¤ects, was considered. For t 2 T ,

the identifying moment function in this case is given by the vector-valued function

m (y; �t) = ((1 fy � �1tg � 0:95), (1 fy � �2tg � 0:75), (1 fy � �3tg � 0:5), (y � �4t),

(1 fy � �5tg � 0:25), (1 fy � �6tg � 0:1), (y2 � �7t))
0 for �t = (�1t, �2t, �3t, �4t, �5t,

�6t)
0. For the implementation, �rst �� was jointly estimated using both the IPWE

and EIFE and then the marginal population parameters of interest were recovered by

means of the delta method.

To ensure comparability the same pre-intervention covariates as in ACL were used.

In particular, these variables include 43 dummy variables (mother�s demographics,

father�s demographics, prenatal care, alcohol use, pregnancy history, month of birth

and county of residency) and 6 �continuous�covariates (mother�s age and education,

father�s age and education, number of prenatal visits, months since last birth and

order of birth).1 For the estimation of both nonparametric nuisance parameters, cubic

B-splines with knots ranging from 1 to 3 depending on the continuous covariate were

used, and to reduce the computational burden an additive separability assumption on

the approximating functions was imposed. Other choices of smoothing parameters for

the splines as well as di¤erent interactions between the dummies and the smoothed

1A full description of the variables used is given in footnote 36 of ACL. The analysis does not
include maternal medical risk factors in the analysis; see also footnote 39 of ACL.
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covariates were also considered. In all the cases, the results appeared to be robust to

the particular speci�cation of the nonparametric estimators.2

Because in this case the model is exactly identi�ed, it is possible to estimate each

treatment e¤ect separately and then form the full EIF to estimate the SPEB. Table 1

presents the point and uncertainty estimates for the 42 treatment e¤ects using three

estimators: a simple dummy regression estimator (DRE), the IPWE and the EIFE.

In this sample, estimates from the (ine¢ cient, possibly inconsistent) DRE appear

to be very similar to those obtained from the (consistent and e¢ cient) IPWE and

EIFE. This result is consistent with the �ndings in ACL. The standard errors of the

estimators IPWE and EIFE appear to be very similar to each other and considerably

lower than those of the DRE in the case of the mean, while for the quantiles the

standard errors are slightly higher.3

A simple way to present the information in Table 1 is by means of Figure 1, which

gives important qualitative information about the treatment e¤ects. This �gure shows

the point estimates and their 95% (marginal) con�dence intervals for the case of the

MMTE and MQTE when estimated using the IPWE. Interestingly, a parallel shift in

2This is consistent with the available literature on semiparametric estimation suggesting that the
choice of basis or smoothing parameters are relatively unimportant (see for example Newey (1994),
Ai and Chen (2003), Chen, Hong, and Tamer (2005), or Chen, Hong, and Tarozzi (2007)). Based
on these results, and for computational simplicity, data-driven procedures (such as cross-validation)
were not considered for the selection of the smoothing parameters.

3In the quantile dummy regression case the standard errors were calculated using a kernel density
estimator with bandwidth set by Silverman�s rule-of-thumb. In the case of IPWE and EIFE, the
gradient matrix �� was estimated using its exact form (implemented by a weighted kernel density
estimator with bandwidth set by Silverman�s rule-of-thumb as in Firpo (2007)). The general numer-
ical derivative approach (implemented by a simple numerical di¤erence) was also considered, which
led to very similar estimates.
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the entire distribution of birth weight along smoking intensity is observed. In partic-

ular, there is a large reduction of about 150 grams when the mother starts to smoke

(1-5 cigarettes), an additional reduction of approximately 70 grams when changing

from 1-5 to 6-10 cigarettes-per-day, and no additional e¤ects once the mother smokes

at least 11 cigarettes. These �ndings provide qualitative evidence that di¤erential

treatment e¤ects are non-linear and approximately homogeneous along the distri-

bution of the potential outcomes. In particular, a close to symmetric distribution

with approximately constant dispersion (as measured by both interquartile ranges

and standard deviation) is observed.

The qualitative results summarized in Figure 1 may be formally tested. Since the

42 marginal treatment e¤ects are jointly estimated, it is straightforward to test the

hypotheses suggested by Figure 1 as well as other hypotheses of interest. Table 2

presents a collection of hypothesis tests regarding pairwise di¤erences and di¤erence-

in-di¤erences of marginal mean treatment e¤ects. On the diagonal, pairwise di¤er-

ences across treatment levels are reported. For example, the reduction in birth weight

induced by increasing maternal smoking from 0 to 1-5 cigarettes is 146 grams (statis-

tically signi�cant), while the corresponding reduction induced by increasing maternal

smoking from 6-10 to 11-15 cigarettes is 37 grams (not statistically signi�cant). This

table also reports the di¤erence-in-di¤erences comparisons which may be used to test

for non-linearities. For example, increasing maternal smoking from 0 to 1-5 ciga-

rettes induces an additional 75 gram reduction in birth weight when compared to
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the corresponding reduction induced by increasing maternal smoking from 1-5 to 6-

10 cigarettes. This di¤erential e¤ect is statistically signi�cant and provides formal

evidence of non-linear treatment e¤ects. Importantly, non-linearities disappear be-

yond the tenth cigarette smoked during pregnancy. Similar results are obtained when

analyzing the MQTE.

Table 3 illustrates additional multiple-hypotheses tests of interest. In the �rst

row, it is reported the joint test for the hypothesis of no treatment e¤ect (as mea-

sured by mean, quantile and spread) for the highest three treatment levels, while in

the second and third rows analogous tests considering the highest four and highest

�ve treatment levels, respectively, are considered. As shown in this table, increasing

smoking intensity beyond 10 cigarettes per day has no further e¤ect on birth weight.

The remaining rows in Table 3 test for di¤erent hypotheses involving possible distri-

butional e¤ects across and within treatment levels. Small but statistically signi�cant

di¤erences on the interquantile ranges are found.

Finally, based on the main �nding that most of the e¤ect of smoking on birth

weight appears to be concentrated on the �rst 10 cigarettes-per-day smoked, it is of

interest to replicate the analysis for the subpopulation of mothers who smoked be-

tween 0 and 10 cigarettes-per-day breaking up the treatment variable into 2-cigarette

bins.4 To conserve space, only qualitative results in Figure 2 are presented. Accord-

ing to this �gure, the treatment e¤ects continue to be non-linear and approximately

4Unfortunately, 1-cigarette bins could not be used due to sample size restrictions.
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homogenous at all quantile levels. Interestingly, the main reduction in birth weight

appears to be caused by increasing the number of cigarettes smoked from 0 to 1-2.

This e¤ect appears constant until the fourth cigarette. Increasing smoking beyond

the fourth cigarette has an additional negative e¤ect on birth weight, although this

e¤ect is smaller than the e¤ect from 0 to 1-2.
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Chapter 4

Block Regression Estimators

This chapter derives the optimal rates of convergence of a nonparametric estimator

of the regression function. In particular, this estimator is a generalization of the

nonparametric estimator known as Partitioning in the statistical literature (see, e.g.

Kohler, Krzyzak, and Walk (2006) and references therein). The potential usefulness

of this estimator in the context of program evaluation is discussed below. After

describing the motivating example, L2 and uniform optimal rates of convergence are

derived followed by a brief discussion of their applicability and how the �ndings of this

chapter contribute to both the literature on program evaluation and, more generally,

the literature of nonparametric regression.
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4.1 Motivating Example: Subclassi�cation on the

Propensity Score

The estimators proposed in Chapter 2, as well as many other alternative estimators

available in the literature of program evaluation, achieve identi�cation of the estimand

of interest by means of Assumption 1. However, as originally discussed in Rosenbaum

and Rubin (1983) for the binary treatment case and in Imbens (2000) for the multi-

valued treatment case, identi�cation may also be obtained by conditioning on the

(Generalized) Propensity Score.1 Assuming T = f0; 1g and focusing on the ATE

for simplicity, this idea leads to a well-known estimator in program evaluation that

conditions on the (estimated) propensity score to remove bias due to endogenous

selection. This estimator was originally suggested in Rosenbaum and Rubin (1983)

and is generically referred to as Subclassi�cation on the Propensity Score.

To describe the estimator, �rst note that Assumption 1 implies

Y (t) ?? Dt j e� (X) , (4.1)

for t 2 f0; 1g and where e� (X) = p�1 (X) for notational simplicity. Consequently, an

alternative estimation procedure would proceed by conditioning on the (estimated)

propensity score rather than on the observable characteristics directly, because

�ATE = E [Y (1)� Y (0)]

= E
�
E [Y j T = 1; e� (X)]� E [Y j T = 0; e� (X)]

�
.

1For a recent discussion on this topic see, e.g., Imai and Dyk (2004).
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In general, a fully nonparametric implementation of this idea leads to

�̂ = bE hbE [Y j T = 1; ê (X)]� bE [Y j T = 0; ê (X)]
i
,

where ê (�) is a (non-)parametric estimator of the propensity score and bE [Y j T = t; �]

is a corresponding nonparametric estimator of the regression function E [Y j T = t; �]

for t 2 f0; 1g. In particular, in a very in�uential paper, Rosenbaum and Rubin (1983)

propose the following nonparametric estimator: given the estimator ê (�) (parametric

or nonparametric), partition the support of ê (�) in J blocks, j = 1; � � � ; J , compute

the within-block di¤erence in means between treatment and control groups, and then

estimate the ATE by a weighted average across blocks, where the weights are the

proportion of observations in each block. More formally,

�̂1 =
JX
j=1

N̂j
n

�
�Y1j � �Y0j

�
,

where N̂j = N̂1j + N̂0j,

N̂tj =
nX
i=1

1 fê (Xi) 2 WjgDt;i,

fWj : j = 1; � � � Jg forms a partition of supp (e (X)), and �Ytj is the mean of the out-

come variable for group t in block j. Intuitively, this estimator can be regarded as

nonparametric in the sense that (under some conditions) when J ! 1 the mean of

the outcome variable within-block approximates the underlying regression function

(nonparametrically), which then is averaged out across blocks to obtain the overall

estimator. As it is standard in nonparametric regression problems, J can be regarded
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as the smoothing parameter in the sense that the higher J the lower the bias and the

higher the variance. This idea motivated Rosenbaum and Rubin (1983) to suggest a

modi�cation of this estimator, given by

�̂2 =
JX
j=1

N̂j
n

�
�̂1j + �̂1j�ej � �̂0j � �̂0j�ej

�
,

where

�
�̂tj; �̂tj

�
= argmin

�;�

nX
i=1

1 fê (Xi) 2 WjgDt;i (Yi � �� �ê (Xi))
2 ,

and

�ej =
1

N̂j

nX
i=1

1 fê (Xi) 2 Wjg ê (Xi) .

Intuitively, �̂2 removes further bias within-block by estimating a linear regression

rather than just the mean for each group.

It is not di¢ cult to verify that these two estimators are also given by �̂1 =

�̂1;1 � �̂0;1 and �̂2 = �̂1;2 � �̂0;2 with

�̂t;K =
1

n

nX
i=1

�̂t;K (ê (Xi)) ,

where RK (e) =
�
1; e; e2; � � � ; eK�1

�
, K 2 N,

�̂t;K (e) =
XJ

j=1
1 fe 2 WjgRK (e)0 ̂t;K (j) ,

and

̂t;K (j) = argmin


nX
i=1

1 fê (Xi) 2 WjgDt;i

�
Yi �RK (ê (Xi))

0 
�2
.
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As a consequence, it is of interest to develop the asymptotic properties of the non-

parametric estimator �̂t;K (e) since it enters directly in the de�nitions of �̂1 and �̂2.

In this chapter �̂t;K (e) is generically referred to as the Block Regression Estimator.

Somehow surprising, even though the estimators �̂1 and �̂2 have been widely used

in applications in di¤erent �elds of study, there is no formal statistical theory that

addresses their properties. One possible justi�cation for the lack of formal theory un-

derlying these estimators is their complexity. In particular, note that a preliminary

(non-)parametric estimator for the propensity score is plugged-in in a non-smooth

function at the time that an increasing number of regressions within blocks (which

are in fact determined by the random function ê (�)) are averaged-out. Moreover, note

that additional complications may arise from the fact that the estimator involves ran-

dom denominators that may take a value of zero. In a �rst attempt to develop formal

large sample results for �̂1, Cattaneo, Imbens, Pinto, and Ridder (2008) proceed

by assuming that e (�) is known and derive a mean squared error expansion of the

estimator and establish its large sample distribution under some regularity conditions.

This chapter derives optimal rates of convergence for �̂t;K (�), which constitutes

a �rst step in the characterization of the large sample properties of objects such as

�̂1 and �̂2. Even though this motivation for studying the large sample properties

of the Block Regression Estimator comes from the program evaluation literature, the

results derived in the next section may be of independent interest for the literature

of nonparametric regression and in particular for splines regression, as discussed in
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more detail below.

4.2 Optimal Rates of Convergence for Block Re-

gression Estimators

This section derives the optimal rates of convergence for the Block Regression

Estimator, a particular nonparametric estimator of a regression function that is im-

plicitly used when estimating the ATE by subclassi�cation on the propensity score.

The notation used in the preceding section is maintained whenever possible to facili-

tate the comparison across sections. However, it is assumed here that the propensity

score is known, so that Ei = e (Xi), and that there is only one group (e.g., T = 1).

To describe the estimator, recall that Y 2 R, and E 2 W = [pmin; 1� pmin] (note

that jWj = 1 � 2pmin), and (Yi; Ei), i = 1; � � � ; n, i.i.d. Let �� (e) = E [Y j E], and

consider the estimator

�̂K (e) =

JX
j=1

1Nj1Wj
(e)RK (e)

0 ̂j;K ,

where 1Nj = 1 fNj � Kg, 1Wj
(e) = 1 fe 2 Wjg,

Nj =

nX
i=1

1 fEi 2 Wjg ,

and

̂j;K 2 argmin


nX
i=1

1 fEi 2 Wjg
�
Yi �RK (Ei)

0 
�2
,
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with RK (e) =
�
1; e; e2; � � � ; eK�1

�0
(this is, RK (e) is a polynomial basis of approxi-

mation) and (Wj : 1; � � � ; J) forms a partition on [pmin; 1� pmin]. To save notation, it

is assumed that jWjj = jWj =J for all j = 1; � � � ; J , this is, all blocks have the same

length over the support of the random variable E.2 Note that random sampling gives

Nj s Bin(qj; n), qj = P [E 2 Wj].

The main di¤erence between the informal discussion of the previous section and

the formal description of the nonparametric estimator given here is the truncation

indicator 1Nj , which is introduced to account for the fact that there may be less obser-

vations than needed to obtain a unique solution for the (least squares) minimization

problem within block. Nonetheless, as shown below, under a mild restriction im-

posed on the rate of growth for J this event occurs with probability approaching zero

(exponentially fast).

The following assumption is su¢ cient to establish the L2 and L1 rates of conver-

gence for �̂K (e):

Assumption 8 On W = [pmin; 1� pmin],

(a) the density of E, denoted f (�), is bounded and bounded away from zero;

(b) �� (e) is K times continuously di¤erentiable; and

(c) V [Y j E = e ] and E
�
(Y � �� (e))4 j E = e

�
are bounded and bounded away

from zero.
2The results presented in this section can in fact be extended to higher dimensions and/or other

basis of approximation. Similarly, it is easy to see that (under some regularity conditions) other
con�gurations of blocks will not a¤ect the large sample results.
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Assumption 8(a) leads directly to C1=J � qj � C2=J for some positive constants

C1 and C2, uniformly in j. Moreover, if J�1n!1 it follows by Cherno¤�s Inequality

that

P
�
1Nj = 0

�
= P [Nj < K] � C exp

�
�J�1n

	
,

and thus

P
�
min
1�j�J

1Nj = 0

�
� CJ exp

�
�CJ�1n

	
,

that is, the truncation indicators decline exponentially fast to zero uniformly in j.

The following theorem is the main result of this chapter.

Theorem 11 If Assumption 8 holds and J�1n!1, then for K 2 N,Z
(�̂K (e)� �� (e))2 dF (e) = Op

�
J=n+ J�2K

�
.

If Assumption 8 holds and J2n�1 = O (1), then for K 2 N,

sup
e2W

j�̂K (e)� �� (e)j = Op

�
J1=2 (log (n) =n)1=2 + J�K

�
The results in Theorem 11 show that the nonparametric rates of convergence of

the Block Regression estimator are optimal. It is easy to verify that these rates attain

the optimal bound derived in Stone (1982). The rate of convergence in L2-norm has

been already established in the literature when K = 1 (see, e.g., Kohler, Krzyzak,

and Walk (2006) and references therein), while the optimal rate of convergence in

L1-norm appears to be new.

It is interesting to note that the nonparametric estimator considered here is very

similar in spirit to the Regression Splines Series Estimator (see, e.g., Newey (1997)).
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In particular, both estimators approximate nonparametrically a regression function by

�tting a polynomial (of some degree) over an increasing sequence of shrinking �blocks�

or �partitions�, where the end-points of these intervals are some times referred to

as knots. The only substantive di¤erence between Regression Splines and Block

Regression is that the former imposes a certain degree of smoothness in the overall

�t (in the sense that the piece-wise polynomials are required to be continuous at

the end-points and admit certain degree of di¤erentiability), while the latter leaves

completely unrestricted how the estimated polynomials in each block are related.

Somehow surprising, Regression Splines do not attain the optimal uniform rate of

convergence while the estimator considered in this chapter does. Although it may

be an artifact of the proofs available (for a recent proof of this result see, e.g., de

Jong (2002)), it is reasonable to conjecture that the increase in speed of uniform

convergence enjoyed by Block Regression is achieved because of the relaxation of the

restrictions imposed by Splines at the end-points.

As mentioned before, the results of Theorem 11 coupled with the proofs presented

in Appendix C may be used to establish the large sample properties of semiparamet-

ric estimators that use this particular nonparametric estimator for the nonparametric

component of the model. In particular, these results can be used to analyze the as-

ymptotic behavior of the estimators introduced in the previous section, generically

known as Subclassi�cation on the Propensity Score, in the context of program eval-

uation. Undoubtedly, establishing these results formally would require additional
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technical work and therefore this analysis is left for future research.
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Chapter 5

Conclusion

Chapter 2 studied the e¢ cient estimation of a large class of multi-valued treat-

ment e¤ects implicitly de�ned by a possibly over-identi�ed non-smooth collection of

moment conditions. Two alternative estimators based on standard GMM arguments

combined with the corresponding modi�cations needed to circumvent the fundamen-

tal problem of causal inference were proposed. Under regularity conditions, these

estimators were shown to be root-n consistent, asymptotically normal and e¢ cient

for the general population parameter of interest. Using these estimators it was shown

how other estimands of interest may also be e¢ ciently estimated, allowing the re-

searcher to recover a rich class of population parameters.

Chapter 3 discussed particular examples of multi-valued treatment e¤ects covered

by the general results presented in Chapter 2. It was shown that important results in

the literature of program evaluation with binary treatment assignments may be seen
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as particular cases of the procedures discussed here when the treatment is dichoto-

mous. Considering multi-valued treatment assignments provides the opportunity for

a better characterization of the program under study. As illustrated in the empir-

ical application also included in Chapter 3, collapsing a multiple treatment into a

binary indicator may prevent the researcher from detecting the presence of important

non-linear e¤ects. More generally, in many applications it would not be surprising to

have multiple di¤erential impacts within and across treatments, which highlights the

relevance of considering multi-valued treatments, when possible, for making informed

policy decisions.

The theoretical results presented in Chapter 2 were obtained under the assump-

tion of �nite multi-valued treatments, which leads to a statistical model where many

estimands of interest are regular, this is, they can be estimated at the parametric

rate. A natural extension would be to relax this assumption to continuous treatment

assignments. This may be appealing from an empirical perspective, but would make

many population parameters of interest irregular. Nonetheless, when treatments are

continuous, it may be possible to consider relevant regular estimands such as spe-

ci�c functionals of the treatment e¤ect process or, more interestingly, alternative

restrictions on the underlying statistical model that may deliver regular population

parameters.

The results presented in this chapter could also be extended based on the de-

velopments available in the literature of binary treatment e¤ects. For example, in
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applications it may be of interest to consider the multi-valued analogue of weighted

treatment e¤ects (Hirano, Imbens, and Ridder (2003)), including average and quantile

treatment e¤ects for a given treatment level as particular cases. E¢ ciency calcula-

tions and the corresponding e¢ cient estimation procedures for these estimands may

be derived by following and extending the work discussed here.

Note that the two estimators proposed in Chapter 2 are �rst-order e¢ cient. How-

ever, as in the binary treatment case, other e¢ cient estimators may also be consid-

ered, which implies that an important open question for future research is how to

rank the large class of �rst-order e¢ cient estimators available. Although it seems

unclear how to rank these estimators, the results of this paper justify focusing on

the marginal treatment e¤ects as the target estimand when ranking the competing

�rst-order e¢ cient estimators.

Finally, Chapter 4 presented optimal rates of convergence for the Block Regression

Estimator, a nonparametric estimator of the regression function. These results may

be of particular importance for the literature of program evaluation since a commonly

used estimator for ATE, known as Subclassi�cation on the Propensity Score, can be

written as a semiparametric estimator that uses the Block Regression Estimator. In

addition, the results of this chapter contribute to the literature of nonparametric

estimation of a regression function.
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Figure 1: E¤ect of Maternal Smoking Intensity on Birth Weight (5-cigarette bins)
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Figure 2: E¤ect of Maternal Smoking Intensity on Birth Weight (2-cigarette bins)
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Appendix A

Proof of Theorems in Chapter 1

Throughout all the appendixes C denotes a generic positive constant which may

vary depending on the context. Also, for any vector v, let v[t] denote its t-th element,

and for any matrix A denote its (i; j)-th element by A[i;j]. �min(A) and �max(A) are

the minimum and maximum eigenvalue of the matrix A, respectively.

Proof of Theorem 1 (EIF and SPEB): the proof given is based on the theo-

retical approach described in Bickel, Klaasen, Ritov, and Wellner (1993) and Newey

(1990), and follows the results presented in Hahn (1998) and Chen, Hong, and Tarozzi

(2007). The derivation is completed in three steps: characterization of the tangent

space, veri�cation of pathwise di¤erentiability of the parameter of interest, and SPEB

computation. Let L20 (FW ) be the usual Hilbert space of zero-mean, square-integrable

functions with respect to the distribution function FW .

First, consider a (regular) parametric submodel of the joint distribution of (Y; T;X),



www.manaraa.com

85

the observed data model, with c.d.f. F (y; t; x; �) and log-likelihood given by

log f (y; t; x; �) =
X

j2T
1 ft = jg

�
log fj (y j x; �) + log pj (x;�)

�
+ log fX (x; �) ,

which equals log f (y; t; x) when � = �0, and where fj (y j x; �) corresponds to the

density of Y (j)jX, pj (x;�) = P [Dj = 1jx; �] and pj (x;�0) = p�j (x) for all j 2 T .

The corresponding score is given by

S (y; t; x; �0) =
d

d�
log f (y; t; x; �)

����
�0

= Sy (y; t; x) + Sp (t; x) + Sx (x) ,

where

Sy (y; t; x) =
X

j2T
1 ft = jg sj (y; x) , sj (y; x) =

d

d�
log fj (y j x; �)

����
�0

,

Sp (t; x) =
X

j2T
1 ft = jg

_p�j (x)

p�j (x)
, _p�j (x) =

d

d�
pj (x;�)

����
�0

,

Sx (x) =
d

d�
log fX (x; �)

����
�0

.

Therefore, the tangent space of this statistical model is characterized by the set

of functions T � Ty + Tp + Tx, where

Ty =
n
Sy (Y; T;X) : sj (Y (t); X) 2 L20

�
FY (t)jX

�
, 8j 2 T

o
,

Tp =
n
Sp (T;X) : Sp (T;X) 2 L20

�
FT jX

�o
,

Tx =
n
Sx (X) : Sx (X) 2 L20 (FX)

o
.

In particular, observe that

E [Sp (T;X) j X] = E
�X

t2T
Dj
_p�t (X)

p�t (X)

���� X� =Xt2T
_pt (X; �0) ,
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and

E
�
Sp (T;X)

2
�� X� = E �X

i2T

X
j2T

Di
_p�i (X)

p�i (X)
Dj

_p�j (X)

p�j (X)

���� X� =Xt2T

_p�t (X)
2

p�t (X)
,

and hence it is required that p�t (x) and _pt (x; �0) are measurable functions such thatP
t2T _p

�
t (X) = 0 and

P
t2T _p

�
t (X)

2 =p�t (X) <1, almost surely. Notice that the �rst

condition implies that by varying the model the probabilities should change in such

a way that they still add up to one. The second condition is veri�ed by Assumption

1(b) and the fact that T is �nite.

Next, de�ne

m
¯
(�) = [m (Y (0) ; �0)

0 ; � � � ;m (Y (J) ; �J)
0]

and let A be any d� (J + 1) � dm (J + 1) positive semi-de�nite matrix. Then the

population parameter of interest satis�es AE[m
¯
(�)] = 0 if and only if � = ��, and

using the implicit function theorem,

@

@�
�� (�) = � (A��)�1A�(�0) ,

where

�� =
@

@�
E [m
¯
(�)]

����
�=��

,

�(�0) =
@

@�
E� [m¯

(��)]

����
�=�0

=
@

@�

Z
m
¯
(��) dF (y; t; x; �)

����
�=�0

,

and observe that

�(�0) =

"
@

@�
E�
�
m (Y (0) ; �0)

0�����
�=�0

; � � � ; @
@�
E�
�
m (Y (J) ; �J)

0�����
�=�0

#
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with typical element j 2 T ,

@

@�
E�
h
m
�
Y (j) ; ��j

�0i����
�=�0

= E
�
m
�
Y (j) ; ��j

�
sj (Y (j) j X)

�
+E

�
e�j
�
X;��j

�
Sx (X)

�
.

Now, to show that the parameter is pathwise di¤erentiable it is needed to �nd

a d� (J + 1)-valued function 	� (y; t; x;A) 2 T such that for all regular parametric

submodels

@

@�
�� (�) = E [	� (Y; T;X;A)S (Y; T;X; �0)] .

It is not di¢ cult to verify that the function satisfying such condition is given by

	� (Y; T;X;A) = � (A��)�1A (Y; T;X; ��; p�; e� (��)) ,

for a �xed choice of the matrix A.

Finally, it follows from semiparametric e¢ ciency theory and standard GMM ar-

guments that the EIF is obtained when A = �0�V
�1
� , which leads to the SPEB given

by V � = (��V
�1
� �0�)

�1. �

Proof of Theorem 3 (Consistency of IPWE): the proof applies Corollary 3.2

in Pakes and Pollard (1989) after setting � = �, �0 = ��, Gn (�) = AnM
IPW
n (�; p̂),

G (�) = AM IPW (�; p�), and verifying their three su¢ cient conditions (i), (ii), and

(iii). First observe that conditions (i) and (ii) are satis�ed by construction of the es-

timator and the model considered. Next, because An�A = op (1), to verify condition
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(iii) it is enough to show

sup
�2B

��M IPW
[t];n (�; p̂t)�M IPW

[t] (�; p�t )
��

� sup
�2B

��M IPW
[t];n (�; p̂t)�M IPW

[t];n (�; p�t )
��+ sup

�2B

��M IPW
[t];n (�; p�t )�M IPW

[t] (�; p�t )
��

= op (1) ,

for all t 2 T . Now the result follows because for n large enough,

sup
�2B

��M IPW
[t];n (�; p̂t)�M IPW

[t];n (�; p�t )
��

� C kp̂t � p�tk1
1

n

nX
i=1

Dt;i

p�t (Xi)
sup
�t2B

jm (Yi; �t)j

= op (1) ,

by Assumption 3(b), and

sup
�2B

��M IPW
[t];n (�; p�t )�M IPW

[t] (�; p�t )
��

= sup
�t2B

����� 1n
nX
i=1

Dt;im (Yi; �t)

p�t (Xi)
� E

�
Dtm (Y ; �t)

p�t (X)

������
= op (1)

because (assuming dm = 1 or applying the following argument element by element)

the class of functions Ft = f1 f� = tg �m (�; �) =p�t (�) : � 2 Bg is Glivenko-Cantelli by

Assumptions 1(b) and 3 (van der Vaart and Wellner (2000)). �

Proof of Theorem 4 (Consistency of EIFE): the proof of this theorem

follows the same logic as the proof of Theorem 3. It is applied Corollary 3.2 in



www.manaraa.com

89

Pakes and Pollard (1989) after setting � = �, �0 = ��, Gn (�) = AnM
EIF
n (�; p̂; ê),

G (�) = AMEIF (�; p�; e�), and verifying their three su¢ cient conditions (i), (ii), and

(iii). Using the same arguments in the proof and the conclusion of Theorem 3, it is

su¢ cient to show

sup
�2B

����� 1n
nX
i=1

êt (Xi; �)
Dt;i � p̂t (Xi)

p̂t (Xi)

����� = op (1) ,

for all t 2 T . To establish this result, �rst notice that E
�
sup�2B je�t (X; �)j

�
<1 for

all t 2 T by Assumption 3(b). Now, for n large enough,

sup
�2B

����� 1n
nX
i=1

êt (Xi; �)
Dt;i � p̂t (Xi)

p̂t (Xi)

�����
� C sup

�2B
kêt (�)� e�t (�)k1 + sup

�t2B

����� 1n
nX
i=1

e�t (Xi; �)
Dt;i � p�t (Xi)

p�t (Xi)

�����+ op (1)

= op (1) ,

because (assuming dm = 1 or applying the argument element by element) the class

of functions Ft = fe�t (�; �) (1 f� = tg � p�t (�)) =p�t (�) : � 2 Bg is Glivenko-Cantelli by

Assumptions 1(b) and 3 (van der Vaart and Wellner (2000)). �

Proof of Theorem 5 (Asymptotic Linear Representation of IPWE):

it is applied Theorem 3.3 and Lemma 3.5 in Pakes and Pollard (1989) after setting

� = �, �0 = ��, Gn (�) = AnM
IPW
n (�; p̂), G (�) = AM IPW (�; p�), and verifying

their �ve su¢ cient conditions (i)-(v). First, observe that conditions (i), (ii), (iv) and

(v) hold by the construction of the estimator, Assumptions 2 and 5, and condition

(3.1). Thus it only remains to show the stochastic equicontinuity condition (iii). To
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establish this condition, it su¢ ces to show (see, e.g., Lemma 3.5 in Pakes and Pollard

(1989) and Lemma 1 in Andrews (2002)) for all sequences �n = o (1) that

sup
j�t���t j��n

n1=2
���M IPW

[t];n (�; p̂)�M IPW
[t] (��; p�)�M IPW

[t];n (��; p̂)
���

1 + Cn1=2 j�t � ��t j
= op (1) ,

for all t 2 T . Now, to verify this �nal condition de�ne

�[t];n (�; p� p�) = � 1
n

nX
i=1

Dt;im (Yi; �t)

p�t (Xi)
2 (pt (Xi)� p�t (Xi)) ,

and consider the following decomposition

��M IPW
[t];n (�; p̂)�M IPW

[t] (�; p�)�M IPW
[t];n (��; p̂)

��
�
��M IPW

[t];n (�; p�)�M IPW
[t] (�; p�)�M IPW

[t];n (��; p�)
�� (A.1)

+
��M IPW

[t];n (�; p̂)�M IPW
[t];n (�; p�)��[t];n (�; p̂� p�)

�� (A.2)

+
��M IPW

[t];n (��; p̂) +M IPW
[t];n (��; p�)��[t];n (�

�; p̂� p�)
�� (A.3)

+
���[t];n (�; p̂� p�)��[t];n (�

�; p̂� p�)
�� . (A.4)

Now, for n large enough and using the �rst term (A.1),

sup
j�t���t j��n

n1=2
���M IPW

[t];n (�; p�)�M IPW
[t] (��; p�)�M IPW

[t];n (��; p�)
���

1 + Cn1=2 j�t � ��t j
= op (1)

because (assuming dm = 1 or applying the following argument element by element)

the class of functions Ft = f1 f� = tgm (�; �) =p�t (�) : j� � ��t j � �g is Donsker with

�nite integrable envelope by Assumption 5 (Theorem 2.10.6 of van der Vaart and

Wellner (1996)) and L2 continuous by Assumptions 2 and 5 (compare to Lemma 2.17

in Pakes and Pollard (1989)).
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For the second term (A.2),

sup
j�t���t j��n

n1=2
���M IPW

[t];n (�; p̂)�M IPW
[t];n (�; p�)��[t];n (�; p̂� p�)

���
1 + Cn1=2 j�t � ��t j

� Cn1=2 kp̂t � p�tk
2
1
1

n

nX
i=1

Di (t) supj�t���t j��n jm (Yi; �t)j
p�t (Xi)

= op (1) ,

by condition (3.1) and Assumption 3.

For the third term (A.3),

sup
j�t���t j��n

n1=2
���M IPW

[t];n (��; p̂) +M IPW
[t];n (��; p�)��[t];n (�

�; p̂� p�)
���

1 + Cn1=2 j�t � ��t j

� Cn1=2 kp̂t � p�tk
2
1
1

n

nX
i=1

Di (t) jm (Yi; ��t )j
p�t (Xi)

= op (1) ,

by condition (3.1) and Assumption 3.

Finally, for the last term (A.4) de�ne

�t;i (�t) =
Dt;i jm (Yi; �t)�m (Yi; �

�
t )j

p�t (Xi)
� E

�
Dt;i jm (Yi; �t)�m (Yi; �

�
t )j

p�t (Xi)

�
,

and note that

sup
j�t���t j��n

n1=2
���[t];n (�; p̂� p�)��[t];n (�

�; p̂� p�)
��

1 + Cn1=2 j�t � ��t j

� Cn1=2 kp̂t � p�tk1 sup
j�t���t j��n

����� 1n
nX
i=1

�t;i (�t)

�����
+ C kp̂t � p�tk1 sup

j�t���t j��n

n1=2E [jm (Y (t); X; �t)�m (Y (t); X; ��t )j]
1 + Cn1=2 j�t � ��t j

= op (1) ,
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because (assuming dm = 1 or applying the following argument element by element)

the class of functions Ft = f1 f� = tg jm (�; �)�m (�; ��t )j =p�t (�) : j� � ��j � �g is

Donsker with �nite integrable envelop by Assumption 5 (Theorem 2.10.6 of van der

Vaart and Wellner (1996)) and L2 continuous by Assumptions 2 and 5.

This establishes condition (iii) of Theorem 3.3 in Pakes and Pollard (1989). �

Proof of Theorem 6 (Asymptotic Linear Representation of EIFE):

the proof of this theorem follows the same logic as the proof of Theorem 5. It is

applied Theorem 3.3 and Lemma 3.5 in Pakes and Pollard (1989) after setting � = �,

�0 = ��, Gn (�) = AnM
EIF
n (�; p̂; ê), G (�) = AMEIF (�; p�; e�), and verifying their

�ve su¢ cient conditions (i)-(v). Like in the proof of Theorem 5, conditions (i), (ii),

(iv) and (v) are already satis�ed, thus it only remains to establish the stochastic

equicontinuity condition (iii), which is implied by the following condition: for all

sequences �n = o (1),

sup
j�t���t j��n

n1=2
���MEIF

[t];n (�; p̂; ê)�MEIF
[t] (�; p�; e� (�))�MEIF

[t];n (�
�; p̂; ê)

���
1 + Cn1=2 j�t � ��t j

= op (1) ,

for all t 2 T . Now, using the results in Theorem 5, it only remains to show that

sup
j�t���t j��n

n1=2
�� 1
n

Pn
i=1 (êt (Xi; �t)� êt (Xi; �

�
t )) (Dt;i � p̂t (Xi)) =p̂t (Xi)

��
1 + Cn1=2 j�t � ��t j

= op (1) .
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Now, for n large enough,

sup
j�t���t j��n

n1=2
�� 1
n

Pn
i=1 (êt (Xi; �t)� êt (Xi; �

�
t )) (Dt;i � p̂t (Xi)) =p̂t (Xi)

��
1 + Cn1=2 j�t � ��t j

� sup
j�t���t j��n;ket�e�t k1��n

n1=2
�� 1
n

Pn
i=1 (et (Xi; �)� et (Xi; �

�
t )) (Dt;i � p̂t (Xi)) =p̂t (Xi)

��
1 + Cn1=2 j�t � ��t j

� sup
j�t���t j��n;ket�e�t k1��n

n1=2
�� 1
n

Pn
i=1 �t;i

��
1 + Cn1=2 j�t � ��t j

(A.5)

+ sup
j�t���t j��n

n1=2
��� 1nPn

i=1
@
@�
e�t (Xi; �

�
t ) (�t � ��t ) (Dt;i � p̂t (Xi)) =p̂t (Xi)

���
1 + Cn1=2 j�t � ��t j

, (A.6)

for some convex linear combination ~� (between �t and �
�
t ), and where

�t;i =

�
@

@�
et(Xi; ~�)�

@

@�
e�t (Xi; �

�
t )

�
(�t � ��t ) (Dt;i � p̂t (Xi)) =p̂t (Xi) .

Next, for the �rst term (A.5) and for n large enough,

sup
j�t���t j��n;ket�e�t k1��n

n1=2
�� 1
n

Pn
i=1 �t;i

��
1 + Cn1=2 j�t � ��t j

� C sup
j�t���t j��n;ket�e�t k1��n

1

n

nX
i=1

���� @@� et (Xi; �t)�
@

@�
e�t (Xi; �)

����
+ C sup

j�t���t j��n

����� 1n
nX
i=1

�
@

@�
e�t (Xi; �t)�

@

@�
e�t (Xi; �

�
t )

�
Dt;i � p�t (Xi)

p�t (Xi)

�����
+ C

1

n

nX
i=1

sup
j�t���t j��n

���� @@� e�t (Xi; �t)

���� ����Dt;i � p̂t (Xi)

p̂t (Xi)
� Dt;i � p�t (Xi)

p�t (Xi)

����
= op (1) ,

because the �rst term is op (1) by Assumption 6(b), the second term is op (1) because

(assuming dm = 1 or applying the argument element by element) the class of functions

Ft = f(@�e�t (�; �)� @�e
�
t (�; ��t )) (1 f� = tg � p�t (�)) =p�t (�) : j� � ��t j � �g is Glivenko-



www.manaraa.com

94

Cantelli for some � > 0 by Assumption 6(a) (van der Vaart and Wellner (2000)), and

the third term is op (1) by Assumption 6(a).

The second term (A.6) is

sup
j�t���t j��n

n1=2
��� 1nPn

i=1
@
@�
e�t (Xi; �

�
t ) (�t � ��t ) (Dt;i � p̂t (Xi)) =p̂t (Xi)

���
1 + Cn1=2 j�t � ��t j

�
����� 1n

nX
i=1

@

@�
e�t (Xi; �

�
t )
Dt;i � p�t (Xi)

p�t (Xi)

�����
+
1

n

nX
i=1

���� @@� e�t (Xi; �
�
t )

���� ����Dt;i � p̂t (Xi)

p̂t (Xi)
� Dt;i � p�t (Xi)

p�t (Xi)

����
= op (1) ,

by Assumption 6(a).

This establishes condition (iii) of Theorem 3.3 in Pakes and Pollard (1989). �

Proof of Theorem 8 (Consistent Estimator of V �): �rst it is useful to

establish the following two results. For all sequences �n = o (1) and for all t 2 T ,

1

n

nX
i=1

���m(Yi; Ti; Xi; �̂; p̂)�m (Yi; Ti; Xi; �
�; p�)

���2 = op (1) (A.7)

and

1

n

nX
i=1

����(Ti; Xi; p̂; ê(�̂))� � (Ti; Xi; p
�; e� (��))

���2 = op (1) . (A.8)
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The �rst result (A.7) follows because for n large enough and for all t 2 T ,

1

n

nX
i=1

�����Dt;im(Yi; �̂t)

p̂t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)

�����
2

� kp̂t � p�tk
2
1
C

n

nX
i=1

Dt;i supj����t j��n jm (Yi; �)j
2

p�t (Xi)

+
C

n

nX
i=1

Dt;i

p�t (Xi)

���m(Yi; �̂t)�m (Yi; �
�
t )
���2

= op (1) ,

by the same arguments and assumptions used in Theorem 5 and an application of

Theorem 2.10.14 of van der Vaart and Wellner (1996). The second result (A.8) follows

because for n large enough and for all t 2 T ,

1

n

nX
i=1

����� êt(Xi; �̂t)

p̂t (Xi)
(Dt;i � p̂t (Xi))�

e�t (Xi; �
�
t )

p�t (Xi)
(Dt;i � p�t (Xi))

�����
2

� C

n

nX
i=1

���e�t (Xi; �̂t)� e�t (Xi; �
�
t )
���2 + op (1)

� C

n

nX
i=1

sup
j�t���t j��n

���� @@� e�t (Xi; �t)

����2 ����̂t � ��t

���+ op (1) = op (1) .

Now, de�ne

Vn =
1

n

nX
i=1

 (Yi; Ti; �
�; p�; e� (��)) (Yi; Ti; �

�; p�; e� (��))0 ,

and notice that Vn � V� = op (1). Next, using Holder�s Inequality,

���V̂n � V�

��� � ���V̂n � Vn

���+ jVn � V�j � R1;n +R2;n +R3;n +R4;n +R5;n + op (1) ,
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where

R1;n =
1

n

nX
i=1

���m(Yi; Ti; Xi; �̂; p̂)�m (Yi; Ti; �
�; p�)

���2 ,
R2;n =

1

n

nX
i=1

����(Ti; Xi; p̂; ê(�̂))� � (Yi; Ti; p
�; e� (��))

���2 ,
R3;n = 2R

1=2
1;nR

1=2
2;n ,

R4;n = 2R
1=2
1;n

 
1

n

nX
i=1

j (Yi; Ti; ��; p�; e� (��))j2
!1=2

,

R5;n = 2R
1=2
2;n

 
1

n

nX
i=1

j (Yi; Ti; ��; p�; e� (��))j2
!1=2

,

and using (A.7) and (A.8) the result follows. �

Proof of Theorem 9 (Consistent Estimator of ��): follows directly by the

same arguments given in the proof of Theorem 6. �

Proof of Theorem 10 (Nonparametric Estimation): �rst, for power series

and splines � (K) = K�, with � = 1 and � = 1=2, respectively, and using Assumption

7 (which for these cases implies Assumption B-1 in Appendix B) � = s=dx (Newey

(1997)). Now Theorem B-1 in Appendix B implies

n1=4 sup
x2X

jp̂ (x)� p� (x)j = n1=4Op
�
K�K1=2n�1=2 +K�K1=2K�s=dx

�
= op (1) ,

under the assumptions of the theorem and therefore condition (5.1) in Theorem 5

holds.

Next, consider condition (5.2) in Theorem 5. It is enough to show the result for a
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typical t-th component of the vector. Thus,

p
n
��M IPW

[t];n (��t ; p̂t)�MEIF
[t];n (�

�
t ; p

�
t ; e

�
t (�

�
t ))
��

�
����� 1pn

nX
i=1

�
Dt;im (Yi; �

�
t )

p̂t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
+
Dt;im (Yi; �

�
t )

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi))

������
(A.9)

+

����� 1pn
nX
i=1

�
�Dt;im (Yi; �

�
t )

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi)) +

e�t (Xi;�
�
t )

p�t (Xi)
(p̂t (Xi)� p�t (Xi))

������
(A.10)

+

����� 1pn
nX
i=1

�
�e

�
t (Xi;�

�
t )

p�t (Xi)
(p̂t (Xi)� p�t (Xi)) +

e�t (Xi;�
�
t )

p�t (Xi)
(Dt;i � p�t (Xi))

������ . (A.11)
The bound of term (A.9) is given by (for n large enough)����� 1pn

nX
i=1

�
Dt;im (Yi; �

�
t )

p̂t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
+
Dt;im (Yi; �

�
t )

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi))

������
� C

p
n kp̂t � p�tk

2
1
1

n

nX
i=1

Dt;i jm (Yi; ��t )j
p�t (Xi)

=
p
nOp

�
(K�K1=2n�1=2 +K�K1=2K�s=dx)2

�
.

The bound of term (A.10) is given by����� 1pn
nX
i=1

�
�Dt;im (Yi; �

�
t )

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi)) +

e�t (Xi;�
�
t )

p�t (Xi)
(p̂t (Xi)� p�t (Xi))

������
�
����� 1pn

nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
2

��
p̂t (Xi)� p0K;t (Xi)

������ (A.12)

+

����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
2

��
p0K;t (Xi)� p�t (Xi)

������ , (A.13)

using the notation introduced in Appendix B. Now, to obtain a bound on the term

(A.12), �rst notice that by a second order Taylor expansion and using the results in
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Appendix B it is obtained for some ~K such that j~K � 0K j � ĵK � 0K j and n large

enough,

p̂t (x)� p0K;t (x)

=
h
_Lt
�
g�0
�
x; 0K

��

RK (x)

0
i �
̂K � 0K

�
+
1

2

�
̂K � 0K

�0 �
H (x; ~K)
RK (x)RK (x)

0� �̂K � 0K
�

�
h
_Lt
�
g�0
�
x; 0K

��

RK (x)

0
i �
̂K � 0K

�
+ C

�
̂K � 0K

�0 �
IJ 
RK (x)RK (x)

0� �̂K � 0K
�
,

which implies that����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
2

��
p̂t (Xi)� p0K;t (Xi)

������
�
��̂K � 0K

�� ����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
2

�h
_Lt
�
g�0
�
Xi; 

0
K

��

RK (Xi)

0
i�����

+
��̂K � 0K

��2 ����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
2

��
IJ 
RK (Xi)RK (Xi)

0������
= Op

�
K1=2n�1=2 +K1=2K�s=dx

�
O
�
K1=2

�
,

where the bound follows because the random variables inside the sums are mean zero

and variance bounded by K.

Now, for the term (A.13)����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)
2

��
p0K;t (Xi)� p�t (Xi)

������ = Op
�
K�s=(2dx)

�
= op (1) .
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Finally, the bound of term (A.11) is given by

1p
n

nX
i=1

�
�e

�
t (Xi;�

�
t )

p�t (Xi)
(p̂t (Xi)� p�t (Xi)) +

et (Xi;�
�
t )

p�t (Xi)
(Dt;i � p�t (Xi))

�

=
1p
n

nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
�RK (Xi)

0 �

�
(Dt;i � p̂t (Xi)) ,

using the �rst order condition for MLSE, which implies that

nX
i=1

(Dt;i � p̂t (Xi))RK (Xi) = 0,

and where � 2 RK is any vector. Now, by choosing � appropriately, verify for n large

enough that����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
�RK (Xi)

0 �

�
(Dt;i � p̂t (Xi))

�����
�
����� 1pn

nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
�RK (Xi)

0 �

�
(Dt;i � p�t (Xi))

�����
+

����� 1pn
nX
i=1

�
e�t (Xi;�

�
t )

p�t (Xi)
�RK (Xi)

0 �

�
(p�t (Xi)� p̂t (Xi))

�����
� Op

�
K�s=(2dx)

�
+ n1=2O

�
K�s=dx

�
Op
�
K�K1=2n�1=2 +K�K1=2K�s=dx

�
.

Using the bounds derived and under the assumptions of Theorem 10,

��M IPW
n (��; p̂)�MEIF

n (��; p�; e� (��))
�� = op

�
n�1=2

�
,

which veri�es condition (5.2) in Theorem 5 as desired.

Next, consider Theorem 6. Conditions (6.1) and (6.2) follow directly from the

previous calculations and the �rst part of Proposition A1 in Chen, Hong, and Tamer
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(2005), respectively. It remains only to show condition (6.3) in Theorem 6. From

Newey (1997) it follows immediately that

n1=4 sup
x2X

jê (x; ��)� e� (x; ��)j = n1=4Op
�
K�K1=2n�1=2 +K�K�s=dx

�
= op (1) .

Now, to establish the �nal condition is enough to show the result for the typical

t-th component. From the previous calculations

1p
n

Xn

i=1

�
Dt;im (Yi; �

�
t )

p̂t (Xi)
� Dt;im (Yi; �

�
t )

p�t (Xi)

�
= � 1p

n

Xn

i=1

Dt;im (Yi; �
�
t )

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi)) + op (1) ,

and using the identity

â

b̂
=
a

b
+
1

b
(â� a)� a

b2

�
b̂� b

�
+

a

b2b̂

�
b̂� b

�2
� 1

bb̂
(â� a)

�
b̂� b

�
,

1p
n

Xn

i=1

�
Dt;iêt (Xi;�

�
t )

p̂t (Xi)
� Dt;ie

�
t (Xi;�

�
t )

p�t (Xi)

�
=

1p
n

Xn

i=1

Dt;i (êt (Xi;�
�
t )� e�t (Xi;�

�
t ))

p�t (Xi)

� 1p
n

Xn

i=1

Dt;ie
�
t (Xi;�

�
t )

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi)) + op (1) .

Putting these results together,

p
n
��MEIF

[t];n (�
�
t ; p̂t; êt (�

�
t ))�MEIF

[t];n (�
�
t ; p

�
t ; e

�
t (�

�
t ))
��

�
���� 1pnXn

i=1

Dt;i (m (Yi; �
�
t )� e�t (Xi;�

�
t ))

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi))

����
+

���� 1pnXn

i=1

Dt;i � p�t (Xi)

p�t (Xi)
(êt (Xi;�

�
t )� e�t (Xi;�

�
t ))

����
+

���� 1pnXn

i=1
(êt (Xi;�

�
t )� e�t (Xi;�

�
t ))

���� .
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Finally, observe that by the same arguments as those used for term (A.10) above,

1p
n

Xn

i=1

Dt;i (m (Yi; �
�
t )� e�t (Xi;�

�
t ))

p�t (Xi)
2 (p̂t (Xi)� p�t (Xi)) = op (1) ,

and by analogous arguments, but for the case of series (linear sieves) it is possible to

verify that

1p
n

Xn

i=1

Dt;i � p�t (Xi)

p�t (Xi)
(êt (Xi;�

�
t )� e�t (Xi;�

�
t )) = op (1) ,

and

1p
n

Xn

i=1
(êt (Xi;�

�
t )� e�t (Xi;�

�
t )) = op (1) ,

under the assumptions of this theorem. Therefore

p
n
��MEIF

n (��; p̂; ê (��))�MEIF
n (��; p�; e� (��))

�� = op (1) ,

which gives condition (6.3) in Theorem 6 as needed. �
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Appendix B

Multinomial Logistic Series

Estimator

This appendix derives uniform rates of convergence for the non-linear sieve esti-

mator proposed for the estimation of the GPS. The results presented here generalize

those in Hirano, Imbens, and Ridder (2003) by allowing for arbitrary number of out-

comes, arbitrary choice of approximating basis, and less stringent requirements in

terms of smoothness of the underlying conditional expectation.

It is important to introduce some normalizations and notation. Under some condi-

tions imposed below and by choosing an appropriate non-singular linear transforma-

tion assume without loss of generality that E
�
RK (X)RK (X)

0� = IK , where IK is the
(K �K) identity matrix (see Newey (1997) for details). Let � (K) = supx2X jRK (x)j,

and observe that in general this bound will depend on the approximating func-
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tions chosen. To reduce notational burden this appendix uses the same number

of approximating functions for each conditional probability, a feature that may be

relaxed at the expense of only additional notation. To deal with all the relevant

probabilities simultaneously de�ne p�0 (X) = (p1 (X) ; � � � ; pJ (X))0 2 RJ , �0;K =�
0K;1; � � � ; 0K;J

�0 2 RJK , and g�0 (X; K) = [RK (X)0 K;1; � � � ; RK (X)0 K;J ]0 2 RJ .
Recall that p�0 (X) = 1�

PJ
j=1 p

�
j (X).

Next, de�ne for a vector z 2 RJ , z = [z1; � � � ; zJ ]0, the functions Lt : RJ ! R and

L�1t : RJ ! R, for all t = 1; 2; � � � ; J ,

Lt (z) =
exp fztg

1 +
PJ

j=1 exp fzjg
, and L�1t (z) = log

(
zt

1�
PJ

j=1 zj

)
.

and set L0 (z) = 1�
PJ

j=1 Lj (z). The gradient of Lt : RJ ! R is given by

_Lt (z) = [�Lt (z)L1 (z) ; � � � ; � Lt (z)Lt�1 (z) ;

Lt (z) (1� Lt (z)) ; � Lt (z)Lt+1 (z) ; � � � ;�Lt (z)LJ (z)]0,

and observe that supz j _Lt (z) j < C since jLt (z)Lj (z)j < 1 and Lt (z) (1� Lt (z)) <

1=4. Also de�ne the vector-valued functions L (z) = [L1 (z) ; � � � ; LJ (z)]0 and L�1 (z) =

[L�11 (z) ; � � � ; L�1J (z)]0 and observe that the function L (�) is di¤erentiable with gradi-

ent (matrix) _L (z) = [ _L1 (z) ; � � � ; _LJ (z)] 2 RJ�J and notice that supz j _L (z) j < C,

for some constant C that only depends on J . With this notation, p
�
X; t;K

�
=

Lt (g�0 (X; K)) for t 2 T (recall K;0 = 0K for identi�cation purposes).

The multinomial logistic log-likelihood is given by

`n (K) =

nX
i=1

JX
t=0

Dt;i log (Lt (g�0 (Xi; K))) ,



www.manaraa.com

104

with solution ̂K = argmaxK `n (K) and estimated probabilities given by p̂t (X) =

Lt (g�0 (Xi; ̂K)) for all t 2 T . Verify that

@

@K;t
`n (K) =

nX
i=1

[Dt;i � Lt (g�0 (Xi; K))]RK (Xi) ,

@2

@K;t@
0
K;l

`n (K) = �
nX
i=1

Ll (g�0 (Xi; K))

� [1 ft = lg � Lt (g�0 (Xi; K))]RK (Xi)RK (Xi)
0 ,

for t = 1; 2; � � � ; J , l = 1; 2; � � � ; J , and in matrix notation

@

@K
`n (K) =

nX
i=1

[Di � L (g�0 (Xi; K))]
RK (Xi) ,

@2

@K@
0
K

`n (K) = �
nX
i=1

H (Xi; K)
RK (Xi)RK (Xi)
0 ,

where Di = (D1;i; D2;i � � � ; DJ;i)
0 and

H (Xi; K) = diag (L (g�0 (Xi; K)))� L (g�0 (Xi; K))L (g�0 (Xi; K))
0 .

To derive the uniform rates of convergence, the followings conditions is su¢ cient:

Assumption B-1. (a) The smallest eigenvalue of E
�
RK (X)RK (X)

0� is bounded
away from zero uniformly in K; (b) there is a sequence of constants � (K) satisfying

supx2X jRK (x)j � � (K), for K = K (n) !1 and � (K)K1=2n�1=2 ! 0, as n !1;

and (c) for all t 2 T there exists 0t;K 2 RK and � > 0 such that

sup
x2X

����log�p�t (x)p�0 (x)

�
�RK (x)

0 0t;K

���� = O
�
K��� ,

and � (K)K1=2K�� ! 0.
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Assumption B-1 is automatically satis�ed in the case of power series or splines if

the GPS is smooth enough. Parts (a) and (b) are standard in the literature (Newey

(1997)), while Part (c) is slightly stronger than its counterpart for linear series be-

cause it imposes a lower bound in � > 0. Part (c) guarantees the existence of an

approximating sequence that can approximate the function uniformly well. For nota-

tional simplicity, denote such sequence by p0t;K (X) = Lt (g�0 (X; 
0
K)), for all t 2 T ,

and de�ne p0K = [p
0
0;K ; � � � ; p0J;K ]0.

The following theorem provides the uniform rate of convergence for the MLSE.

Theorem B-1. (Uniform Rate of Convergence of MLSE) If Assumptions

1(b) and B-1 hold, then

(i) kp0K � p�k1 = O (K��),

(ii) ĵK � 0K j = Op
�
K1=2n�1=2 +K1=2K���,

and consequently kp̂� p�k1 = Op(� (K)K
1=2n�1=2 + � (K)K1=2K��).

Proof of Theorem B-1 (Uniform Rate of Convergence of MLSE):

First, Assumption B-1(c) implies that

sup
x2X

��L�1 �p��0 (x)�� g�0
�
x; 0K

��� = O
�
K��� :

Since the mapping L (�) is di¤erentiable with supz j _L (z) j < C, an application of the

mean value theorem gives

sup
x2X

��p��0 (x)� L �g�0 �x; 0K���� � C sup
x2X

��L�1 �p��0 (x)�� g�0
�
x; 0K

��� ,
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and since p�0 (x) = 1 �
PJ

j=1 p
�
j (x) and L0 (g�0 (x; 

0
K)) = 1 �

PJ
j=1 Lj (g�0 (x; 

0
K))

part (i) follows directly.

For part (ii), �rst recall that Lt (g�0 (x; )) > 0, for all t = 1; 2; � � � ; J , andPJ
t=1 Lt (g�0 (x; )) < 1. The special structure of the matrix H (x; ) and Theorem 1

in Tanabe and Sagae (1992) shows that H (x; ) is symmetric positive de�nite with

0 < �min (H (x; )) � �max (H (x; )) < 1, which implies that

H (x; ) � �min (H (x; )) IJ � det (H (x; )) .

These results and the exact Cholesky decomposition of H (x; ) gives

inf
x2X

H (x; ) � inf
x2X

YJ

t=0
Lt (g�0 (x; )) IJ ,

in a positive semide�nite sense.

Now, let 
̂K = n�1
Pn

i=1RK (Xi)RK (Xi)
0, and observe that (Newey (1997))

j
̂K � IK j = Op(� (K)K
1=2n�1=2). De�ne the event An = f�min(
̂K) > 1=2g and

by Assumption B-1(b) Op
�
� (K)K1=2n�1=2

�
= op (1), which implies P [An]! 1.
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Next,

E
����� 1n @

@
`n
�
0K
������ = E

"����� 1n
nX
i=1

�
Di � L

�
g�0
�
Xi; 

0
K

���

RK (Xi)

�����
#

�

0@E
24����� 1n

nX
i=1

�
Di � p��0 (Xi)

�

RK (Xi)

�����
2
351A1=2

+ E

"����� 1n
nX
i=1

�
p��0 (Xi)� L

�
g�0
�
Xi; 

0
K

���

RK (Xi)

�����
#

� C

�
1

n
E
h���Di � p��0 (Xi)

�

RK (Xi)

��2i�1=2
+ C sup

x2X

��p��0 (x)� L �g�0 �x; 0K����E [jRK (X)j]
= O

�
K1=2n�1=2 +K1=2K��� ,

and by Markov�s Inequality

���� 1n @

@
`n
�
0K
����� = Op

�
K1=2n�1=2 +K1=2K��� ,

which implies that for any �xed constant & > 0 the probability of the event

Bn (&) =
����� 1n @

@
`n
�
0K
����� < &

�
K1=2n�1=2 +K��+1=2��

approaches one, i.e., P [Bn (&)]! 1.

Let � = infx2X
QJ
t=0 Lt (g�0 (x; 

0
K)) and observe that for K large enough � > 0

by part (i) and the assumption that the true probabilities are strictly between zero

and one. De�ne the sets

��K =

�
 2 RJK : inf

x2X

YJ

t=0
Lt (g�0 (x; )) >

�

2

�
,
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and �0K (%) =
�
 2 RJK : j � 0K j � %

�
K1=2n�1=2 +K1=2K���	 for any % > 0, and

because (for some intermediate point ~K),

sup
x2X ;2�0K(%)

��L (g�0 (x; ))� L �g�0 �x; 0K����
� sup

x2X ;2�0K(%);~K

��� _L (g�0 (x; ~K))
RK (Xi)
0
��� �� � 0K

��
� C� (K) sup

2�0K(%)

�� � 0K
��

= O
�
� (K)K1=2n�1=2 + � (K)K1=2K��� = o (1)

by Assumptions B-1(b) and B-1(c), and for n for large enough it follows that ��K �

�0K (%).

To �nish the argument, choose n large enough so that ��K � �0K (C), P [An] �

1� "=2 and P [Bn (�C=8)] � 1� "=2, for some C > 0. Then for any K 2 �0K ,

� @

@@0
`n (K) =

1

n

nX
i=1

H (Xi; K)
RK (Xi)RK (Xi)
0

� 1

n

nX
i=1

�
inf
x2X

YJ

t=0
Lt (g�0 (x; K)) IJ

�

RK (Xi)RK (Xi)

0

� �

2

h
IJ 
 
̂K

i
,

which implies that with probability at least (1� "),

�min

�
� @

@@0
`n (K)

�
� �

4
.

Moreover, under the same conditions (i.e., also with probability at least (1� "))
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verify that for any K 2 �0Kn f0Kg,

`n (K)� `n
�
0K
�

=
@

@
`n
�
0K
� �
K � 0K

�
� 1
2

�
K � 0K

�0 �� @

@@0
`n (~K)

� �
K � 0K

�
�
���� @@ `n �0K�

���� ��K � 0K
��� �

8

��K � 0K
��2

�
����� @@ `n �0K�

����� �

8
C
�
K1=2n�1=2 +K1=2K���� ��K � 0K

�� < 0,
for some ~K such that j~K � 0K j � jK � 0K j. Since `n (K) is continuous and

concave, it follows that ̂K maximizes `n (K) and ̂K satis�es the �rst order condition

with probability approaching one.

Now the result follows directly. �
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Appendix C

Block Regression Estimator

Recall that r (e) =
�
1; e; e2; � � � ; eK�1

�
2 RK . Let


j = E
�
RK (E)RK (E)

0 �� 1Wj
(E) = 1

�
be the second moment matrix. The best linear predictor within block is de�ned as

~�j (e) = 1Wj
(e) r (e)0 ~j where

~j = argmin

E
h�
Y �RK (E)

0 
�2 ��� 1Wj

(E) = 1
i

=
�
E
�
RK (E)RK (E)

0 �� 1Wj
(E) = 1

���1 �E �RK (E)Y j 1Wj
(E) = 1

��
= 
�1j E

�
RK (E)Y j 1Wj

(E) = 1
�
.



www.manaraa.com

111

while the regression estimator is given by �̂j (e) = 1NjRK (Ei) (e)
0 ̂j where (on�

1Nj = 1
	
)

̂j = argmin


Xn

i=1
1Wj

(Ei)
�
Yi �RK (Ei)

0 
�2

=

�
1

Nj

Xn

i=1
1Wj

(Ei)RK (Ei)RK (Ei)
0
��1�

1

Nj

Xn

i=1
1Wj

(Ei)RK (Ei)Yi

�
= 
̂�1j

�
1

N1j

Xn

i=1
1Wj

(Ei)RK (Ei)Yi

�
.

Next, for �xed K, de�ne the diagonal matrix

J�1 = diag

"�
jWj
J

�k
: k = 0; 1; � � � ; K � 1

#

and de�ne the lower triangular matrix Lj as

Lj (k; l) =

�
k � 1
l � 1

��
bj�1
jWjj

�k�l
1 f1 � l � k � K + 1g ,

where bj is the upper limit of the j-th block, and let Uj = L0j, the corresponding

upper triangular matrix.

The proof of Theorem 11 will follow directly from the following Lemmas:

Lemma 12 (Decomposition for Change of Variables of Regression Ba-

sis) For d; l 2 R, RK (d (e+ l)) = DLRK (e), where D = diag
�
dk : k = 0; 1; � � � ; K

�
and the matrix L is a lower triangular matrix with typical element,

L (k; i) =

�
k � 1
i� 1

�
lk�i1 f1 � i � k � K + 1g

and observe that L (k; k) = 1. De�ne U = L0.
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Lemma 13 (Uniform Bound of Normalized Regression Basis)

sup
e2Wj

��L�1j JRK (e)�� = K + 1, uniformly in j and J .

Lemma 14 (Eigenvalues for Normalized Second Moment Matrix)

C� (K) � �max
�
L�1j J
jJU

�1
j

�
� C� (K) , uniformly in j and J ,

and where 0 < C� (K) � C� (K) <1.

Proof. First, let H be the Hilbert matrix of order K and de�ne the matrix Hj �R
Wj
RK (e)RK (e)

0 de, and observe that by change of variables

Hj �
Z
Wj

RK (e)RK (e)
0 de = jWjj

Z 1

0

RK (u jWjj+ bj�1)RK (u jWjj+ bj�1)
0 du.

Recall that jWjj = jWj =J and observe that using the previous Lemmas,

RK (u jWjj+ bj�1) = RK (jWjj (u+ bj�1= jWjj)) = J�1LjRK (u) :

Putting these results together,

JHj = jWj
Z 1

0

J�1LjRK (u)RK (u)
0UjJ

�1du = CJ�1LjHUjJ
�1.

Next, observe that


j = E
�
RK (E)RK (E)

0 �� 1Wj
(E) = 1

�
=

1

qj
E
�
1Wj

(E)RK (E)RK (E)
0�

=
1

qj

Z
Wj

RK (e)RK (e)
0 f (e) de,
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which implies that

C�JHj � C�J

Z
Wj

RK (e)RK (e)
0 de � 
j � C�J

Z
Wj

RK (e)RK (e)
0 de � C�JHj,

which leads to

C�H = C�L
�1
j J (JHj)JU

�1
j � L�1j J
jJU�1

j � C�L�1j J (JHj)JU
�1
j = C�H.

Finally, to get the �rst result, note that �max
�
L�1j J
jJU

�1
j

�
� C��max (H) �

C� (K) which holds uniformly in j and J . To verify the second result, observe that

�min
�
L�1j J
jJU

�1
j

�
� C��min (H) � C� (K) which holds uniformly in j and J .

Lemma 15 (Rates of Convergence for Normalized Sample Second Mo-

ment Matrix)

E
����1NjL�1j J
̂jJU�1

j � L�1j J
jJU�1
j

���2� = O
�
Jn�1

�
, uniformly in j, and

E
�
max
1�j�J

���1NjL�1j J
̂jJU�1
j � L�1j J
jJU�1

j

���2� = O
�
J2n�1

�
.

As a consequence,

���1NjL�1j J
̂jJU�1
j � L�1j J
jJU�1

j

��� = Op
�
J1=2n�1=2

�
, uniformly in j,

max
1�j�J

���1NjL�1j J
̂jJU�1
j � L�1j J
jJU�1

j

��� = Op
�
Jn�1=2

�
.
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Proof. First, observe that

E

"����1NjL�1j J
̂jJU�1
j � N1j

Nqj
L�1j J
̂jJU

�1
j

����2
#

= E

"�
1Nj

1

Nj
� 1

qjn

�2 ���Xn

i=1
1Wj

(Ei)L
�1
j JRK (Ei)RK (Ei)

0 JU�1
j

���2#

�
 
sup
e2Wj

��L�1j Jr (e)��2
!2
E

"�
1Nj

1

Nj
� 1

qjn

�2
N2
j

#

=
C

q2jn
2
E
h�
Nj � 1Njqjn

�2i
= O

�
Jn�1

�
.

Second, de�ne

�ij =
1

qj
1Wj

(Ei)L
�1
j JRK (Ei)RK (Ei)

0 JU�1
j ,

and note that

E

"����N1jqjn
L�1j J
̂jJU

�1
j � L�1j J
jJU�1

j

����2
#

= E

"���� 1nXn

i=1
�ij � E [�ij]

����2
#

� 1

n
E

"���� 1qj 1Wj
(E)L�1j JRK (E)RK (E)

0 JU�1
j

����2
#

=
C

J2n
E
h
1Wj

(E)
��L�1j JRK (E)RK (E)0 JU�1

j

��2i
= O

�
Jn�1

�
.

Now, the �rst conclusion follows by putting these two results together and using

the triangular inequality. The second conclusion follows by Boole�s inequality, while

the last two conclusions follow directly by Markov�s inequality.
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Lemma 16 (Normalized Sample Second Moment Matrix Eigenvalues)

C� (K)�Op
�
J2n�1

�
� 1Nj�max

�
L�1j J
̂jJU

�1
j

�
� C� (K) +Op

�
J2n�1

�
,

uniformly in j and J .

Lemma 17 (Uniform Bounded Tails) If J2n�1 = O (1) then

P
�
max
1�j�J

1

qjn

Xn

i=1
1Wj

(Ei) (Yi � �� (Ei))
2 > 2M

�
�! 0, as M �!1.

Proof. First, de�ne the stochastic process

Zn (j) =
1

qjn

Xn

i=1
1Wj

(Ei) (Yi � �� (Ei))
2 ,

and observe that for any � > 0 and for all j = 1; 2; � � � ; J ,

P [jZn (j)j � �] � 1� 1

�
E
�
1

qjn

Xn

i=1
1Wj

(Ei) (Yi � �� (Ei))
2

�
= 1� 1

�
E
�
(Y � �� (E))2

�� 1Wj
(E) = 1

�
� 1� v�

�
� �,

which implies that � �! 1 as � �! 1. In particular, let � = M and observe that

for M large enough P [jZn (j)j �M ] � 1=2.

Next, apply Lemma 8 (First Symmetrization) of Pollard (1984) with � = M to

obtain

P
�
max
1�j�J

jZn (j)j � 2M
�
� 2P

�
max
1�j�J

���Zn (j)� ~Zn (j)
��� �M

�
,
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where ~Zn (j) is an independent copy of Zn (j) as explained in Pollard (1984). To

�nish the argument, observe that by Markov�s Inequality

P
�
max
1�j�J

���Zn (j)� ~Zn (j)
��� �M

�
� 1

M2
J max
1�j�J

E
����Zn (j)� ~Zn (j)

���2�
� C

M
J max
1�j�J

E
�
jZn (j)� E [Zn (j)]j2

�
� C

M2

J3

n
max
1�j�J

E
�
1Wj

(E) (Y � �� (E))4
�

� C

M2

J2

n
= o (1) ,

giving the result.

Lemma 18 (Uniform Convergence of Normalized Sum) If J2n�1 = O (1)

then

max
1�j�J

���� 1qjnXn

i=1
1Wj

(Ei)
�
L�1j JRK (Ei)

�
(Yi � �� (Ei))

���� = Op

�
J1=2n�1=2 log (n)1=2

�
.

Proof. The proof of this result also follows the seminal work of Pollard (1984)

(see Theorem 37, pages 34-35). First, observe that

max
1�j�J

���� 1qjnXn

i=1
1Wj

(Ei)
�
L�1j JRK (Ei)

�
(Yi � �� (Ei))

����
= max

1�j�J

"XK

k=0

�
1

qjn

Xn

i=1
1Wj

(Ei)
��
L�1j JRK (Ei)

�
k

�
(Yi � �� (Ei))

�2#1=2

� C max
0�k�K

max
1�j�J

���� 1qjnXn

i=1
1Wj

(Ei)
��
L�1j JRK (Ei)

�
k

�
(Yi � �� (Ei))

���� ,
where the term inside the absolute value is a sum of iid mean zero random variables

and [v]k denotes the k-th component of the vector v. To save notation, de�ne

�ijk =
1

qj
1Wj

(Ei)
��
L�1j JRK (Ei)

�
k

�
(Yi � �� (Ei)) .
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Next, �x k = 0; 1; :::; K and let �2n = Jn�1 log (n). Then, for �xed � > 0 and by

the Markov�s Inequality

P
�
��1n

���� 1nXn

i=1
�ijk

���� � �

�
� 1

�2
��2n E

"���� 1nXn

i=1
�ijk

����2
#

� 1

�2
��2n

1

n
E

"���� 1qj 1Wj
(E)

��
L�1j JRK (E)

�
k

�
(Y � �� (E))

����2
#

� CJ�1

�2 log (n) qj
E
���

L�1j J r (E)
�
k

�2
(Y � � (E))2

���� 1Bj (E) = 1�
� C

�2 log (n)
,

and hence for any constant � > 0 and n large enough it follows that

P
�
��1n

���� 1nXn

i=1

1

qj
1Wj

(Ei)
��
L�1j JRK (Ei)

�
k

�
(Yi � �� (Ei))

���� � �

�
� 1

2
,

which holds for each j = 1; 2; :::; J . Using this result and applying the two sym-

metrizations discussed in Pollard (1984) (pp. 14-15) with � = M and � = 1=2,

gives

P
�
max
1�j�J

���� 1nXn

i=1
�ijk

���� > �n3M

�
� 4P

�
max
1�j�J

���� 1nXn

i=1
�ijk�i

���� > �nM

�
= 4E

�
P
�
max
1�j�J

���� 1nXn

i=1
�ijk�i

���� > �nM

���� fEi; Yig�� ,
where �i are independent Rademacher random variables as explained in Pollard (1984).

Now, using the Boole�s inequality, Hoe¤ding�s inequality and previous bounds it
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follows that

P
�
max
1�j�J

���� 1nXn

i=1
�ijk�i

���� > �nM

���� fEi; Yig�
�
XJ

j=1
P
����� 1nXn

i=1
�ijk�i

���� > �nM

���� fEi; Yig�

� 2J max
1�j�J

exp

8><>:� 2 (qjn�nM)
2Pn

i=1

h
21Wj

(Ei)
�
L�1j JRK (Ei)

�
k
(Yi � �� (Ei))

i2
9>=>;

= 2J max
1�j�J

exp

(
�1
2

J�1n2 log (n)M2Pn
i=1 1Wj

(Ei)
�
L�1j JRK (Ei)

�2
k
(Yi � �� (Ei))

2

)

� 2J exp
(
� C log (N)M2

max1�j�J q
�1
j n�1

PN
n=1 1Bj (En) (Yn � � (En))

2

)
.

To �nish the argument, using the previous results, note that

P
�
max
1�j�J

���� 1nXn

i=1

1

qj
1Wj

(Ei)
��
L�1j JRK (Ei)

�
k

�
(Yi � �� (Ei))

���� > �n3M

�
� 2J exp

�
�C log (N)M

2

2M

�
+ P

�
max
1�j�J

1

qjn

Xn

i=1
1Wj

(Ei) (Yi � �� (Ei))
2 > 2M

�
,

where the �rst term is o (1) (for example, if J = N � then this term is o (1) for any

M > 2�= (C")), and the second term is o (1) according the previous Lemmas. This

establishes that for �xed k,

P
�
max
1�j�J

���� 1nXn

i=1

1

qj
1Wj

(Ei)
��
L�1j JRK (Ei)

�
k

�
(Yi � �� (Ei))

���� > �n3M

�
�! 0,

as M �! 1 for n large enough. Now the conclusion follows because the �nal bound

is not a function of k = 0; 1; :::; K.

Proof of Theorem 11: For the uniform rate of convergence observe that it is
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su¢ cient to show,

sup
e2Wj

�����0K;j (e)� �� (e)

���� = O
�
J�K

�
(C.1)

for some �0K;j (e) = RK (e)
0 0K;j and uniformly in j,

sup
e2Wj

����~�K;j (e)� �0K;j (e)

���� = O
�
J�K

�
, (C.2)

for ~�K;j (e) = RK (e)
0 ~K;j and uniformly in j, and

sup
e2Wj

�����̂K;j (e)� ~�K;j (e)���� = Op

�
J1=2n�1=2 log (n)1=2

�
+Op

�
J�K

�
, (C.3)

uniformly in j.

Now, Equation (C.1) can be veri�ed by using Theorem 4.2 (page 183) jointly with

the results on page 46 of DeVore and Lorentz (1993), which implies that there exists

a vector 0j 2 RK such that

sup
e2Wj

��RK (e)0 0j � �� (e)
�� � C

�
1

J

�K
sup
e2Bj

���� @K@eK �� (e)
���� = O

�
J�K

�
.

Next, observe that

sup
e2Wj

����RK (e)0 ~j �RK (e)
0 0j

����
= sup

e2Wj

����RK (e)0 �
�1j E �RK (E)Y j 1Wj
(E) = 1

�
� 0j

�����
= C sup

e2Wj

��E �L�1j JRK (E) ��� (E)�RK (E)
0 0j
� �� 1Wj

(E) = 1
���

� C sup
e2Wj

���� (e)�RK (e)
0 0j
��

= O
�
J�K

�
,
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which gives Equation (C.2).

Finally,

sup
e2Wj

����1NjRK (e)0 ̂j �RK (e)
0 �j

����
= sup

e2Wj

����1NjRK (e)0 
̂�1j � 1

Nj

Xn

i=1
1Wj

(Ei)RK (Ei)
�
Yi �RK (Ei)

0 �j
������+ op

�
J�K

�
� Op (1)

���� 1Nj XN

n=1
1Wj

(Ei)
�
L�1j JRK (Ei)

� �
Yi �RK (Ei)

0 �j
�����+ op

�
J�K

�
� Op (1) max

1�j�J

���� 1qjnXN

n=1
1Wj

(Ei)
�
L�1j JRK (Ei)

�
(Yi � �� (Ei))

����+Op
�
J�K

�
= Op

�
Jn�1=2 log (n)1=2

�
+Op

�
J�K

�
,

where the last result follows by the previous calculations and lemmas.

Using Equations (C.1), (C.2), and (C.3), the uniform rate of converge follows

directly by the triangular inequality after noting that

sup
e2W

�����̂ (e)� �� (e)

���� = sup
e2W

���XJ

j=1
1Wj

(e) �̂j (e)� �� (e)
���

= max
1�j�J

sup
e2Wj

�����̂j (e)� �� (e)

���� .
Next, to verify the L2 rate of convergence, using the results of the previous Lemmas

it follows that

L�1j J
�
1Nj ̂j � �j

�
= C

1

qjn

Xn

i=1
1Wj

(Ei)L
�1
j JRK (Ei)

�
Yi �RK (Ei)

0 �j
�
+ op

�
Jn�1

�
= Op

�
J1=2n�1=2

�
,
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uniformly in j since

E

"���� 1qjnXn

i=1
1Wj

(Ei)L
�1
j JRK (Ei)

�
Yi �RK (Ei)

0 �j
�����2
#
= O

�
Jn�1

�
.

This result leads to

Z
(�̂K (e)� �0 (e))

2 dF (e)

�
�
1NjL

�1
j Ĵj � L�1j J0j

�2 Z �XJ

j=1
1Wj

(e)
�
L�1j JRK (e)

�0�2
dF (e)

+

Z �XJ

j=1
1Wj

(e)�0j (e)� �� (e)
�2

dF (e)

� Op
�
Jn�1

�
+O

�
J�2K

�
,

and this completes the proof. �




